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followed by a proof-of-value at the customer site. To 
build these prototype solutions, we use both in-house 
CSI technology as well as technology from the Center 
for Technology Innovation (CTI). The final step is 
working with a business unit to scale the solution to 
multiple customers in the same vertical as well as to 
customers across different verticals.

INTRODUCTION

WE are at the cusp of transformative changes across 
industries, from agriculture to manufacturing, from 
mining to energy production, from healthcare to 
transportation. These transformations hold the promise 
of making our economic production more efficient, 
cost-effective, and sustainable and are being driven 
by the convergence of the global industrial system 
operational technology (OT) with the power of 
integrating advanced computing, analytics, low-cost 
sensing and new levels of connectivity information 
technology (IT). This convergence enables the creation 
of a new class of big data solutions for monitoring, 
managing, and optimizing industrial operations and 
physical systems. 

At Hitachi, we realize that there is a need for such 
solutions in the broader marketplace. We can use our 
decades of experience in equipment manufacturing 
and marry it with our expertise in analytics to bring 
unique solutions to market that solve some hard and 
important customer problems. The Global Center 
for Social Innovation (CSI) has been chartered to 
accomplish this vision. Within CSI, we have developed 
a methodology for creating new solutions that are of 
value to customers (see Fig. 1). It starts with having a 
dialogue with customers to understand their needs and 
pain-points using a design methodology. The next step 
is the development of prototype solutions and demos 

OVERVIEW: Through the proliferation of sensors, smart machines, and 
instrumentation, industrial operations are generating ever increasing 
volumes of data of many different types and our customers are demanding 
solutions that provide business value over this collected data. In our 
interactions with customers across verticals, we have discovered that there 
is an urgent need for predictive maintenance solutions that meet customer 
demands. The reason for the appeal of predictive maintenance solutions is 
their ability to increase equipment availability, reduce the cost of unexpected 
failures and make operations more predictable. Hitachi offers a portfolio 
of data analytics technologies to address predictive maintenance use cases 
in a variety of verticals and in this paper we present an overview of our 
work in this area.

Chetan Gupta, Ph.D. 

Ahmed Farahat, Ph.D.

Tomoaki Hiruta

Kosta Ristovski, Ph.D.

Umeshwar Dayal, Ph.D.

Collaborative Creation with Customers for Predictive 
Maintenance Solutions on Hitachi IoT Platform

CSI activity Commercialize

Share vision 
with customer

(1)
Generate new 

concepts, 
develop 

prototype & 
demos

(2)
Proof-of-concept 
at customer site

Center for 
Technology Innovation

• Service design
• Ethnography

Collaborative 
design method

Utilize technology 
platforms

(3)
Develop 
solution

Same sector

Different 
sector 

deployment

(4)

C
ol

la
bo

ra
ti

ve
 c

re
at

io
n 

ap
pr

oa
ch

Fig. 1—Collaborative Creation with Customers for Predictive 
Maintenance Solutions.
The diagram shows the stages of the collaborative creation with 
customers methodology used to create new solutions that are of 
value to customers.

CSI: Global Center for Social Innovation
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One application area that is common across 
verticals is the area of predictive maintenance – 
the ability to do the “right maintenance at the right 
time.” This includes problems such as performance 
monitoring and modeling, maintenance analytics, and 
of course, failure prediction. Predictive maintenance 
allows operators to reduce downtime and the cost 
of unexpected failures, and increase availability, 
predictability, and confidence in their operations. For 
equipment vendors, it opens avenues for new service 
and business models.

This article presents an overview of the predictive 
maintenance technologies created by Hitachi in 
close collaboration with customers. The article 
demonstrates practical use cases and describes 
predictive maintenance solutions that will be available 
on the Hitachi Internet of Things (IoT) platform, called 
Lumada, and a common analytics framework. 

The rest of the article is organized as follows. 
The section entitled “Data Analytics for Predictive 
Maintenance,” gives an overview of predictive 
maintenance and the solutions offered by Hitachi to its 
customers. “Failure Prediction Use Cases” focuses on 
use cases for failure prediction, which is a key problem 
in predictive maintenance. “Solutions on Common 
Analytics Framework and Lumada” describes how 
to build repeatable achieve predictive maintenance 
solutions. And “Conclusions” concludes the paper.

DATA ANALYTICS FOR PREDICTIVE 
MAINTENANCE

Maintenance is a process for which the objective is 
to keep the equipment in a working, efficient and 
cost-effective condition. The maintenance process 
is conducted by performing the necessary actions 
on the equipment to achieve one or more of these 
objectives. These actions include, but are not limited 
to, inspection, tuning, repair, and overhaul of the 
equipment or its components.

Predictive maintenance is a maintenance strategy 
that depends on monitoring the condition of the 
equipment in order to determine the right maintenance 
actions that need to be taken, at the right time. Predictive 
maintenance has many advantages over other strategies 
such as corrective and preventive maintenance as it 
reduces the chance of unexpected failures, increases 
the equipment availability, and accordingly, decreases 
the overall cost of the maintenance process. 

Predictive maintenance technologies utilize one or 
both of the following.

(1) Physical devices(1) 
Physical devices that assist in the diagnosis of 

equipment conditions such as devices traditionally 
used for vibration monitoring, lube oil analysis, 
particle wear analysis, thermography, and ultrasonic 
analysis.
(2) Software technologies

Software technologies that continuously monitor 
and analyze the sensor and event data generated by 
the equipment and other physical devices along with 
maintenance and operation data. 

Software technologies for predictive maintenance 
can be further classified into: 
(a) Knowledge-driven systems

In these systems, information about conditions 
to be monitored (e.g., pre-failure conditions) are 
manually encoded by the equipment manufacturer 
or other experts in the equipment domain. This is 
the most common technology for software-based 
predictive maintenance that is usually embedded 
by the manufacturer into the control software of the 
equipment. This technology is however limited by the 
knowledge of domain experts about possible patterns 
of equipment conditions or by the sophistication 
of the physical models used at design time. For 
complex equipment, such methods fail to capture the 
interrelationships between the sub-components, and 
as a result, the actual behavior of the equipment is 
often different from physics based simulation models 
or pre-defined human generated rules. 
(b) Data-driven systems

In these systems, information about the conditions of 
interest are learned from historical sensor data and event 
logs. In comparison to knowledge-based technologies, 
data analytics have the potential of capturing complex 
patterns that are often not captured by domain experts 
during the design or deployment time. 

Data analytics technologies for predictive 
maintenance can be categorized into descriptive, 
predictive, and prescriptive. The rest of this section 
describes some of the technologies offered by Hitachi 
in each of these categories.

Descriptive Analytics
Descriptive analytics discover actionable insights from 
historical data about the operation of the equipment. 
These insights enable the maintenance personnel and 
management to improve the maintenance process, and 
eliminate inefficiencies in the equipment operation. 
Examples of descriptive analytics technologies for 
predictive maintenance are described below.
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Performance degradation detection
We initially developed this technology for a 
customer who wanted to understand the performance 
degradation of a set of equipment that had been 
in the field for close to 10 years. This involves 
detecting slow degradation in the performance of the 
equipment or its components. This slow degradation 
could be an early warning of some failure, or could 
reflect an inefficient or cost-ineffective state of the 
equipment that needs to be addressed. Our solution 
for performance degradation detection learns the ideal 
performance of the equipment from historical data 
based on predefined health indices. Health indices are 
usually defined in collaboration with domain scientists 
and then normalized using machine learning in order 
to remove the effect of load and seasonality. By 
continuous monitoring of normalized health indices, 
it is possible to detect performance degradation. This 
results in an early enough warning for the maintenance 
staff to take actions to prevent a failure or restore the 
equipment to an efficient and cost-effective state.
Maintenance effectiveness estimation
Our technology for maintenance effectiveness 
estimation depends on statistical analysis of the 
performance before and after maintenance actions(2) 
and was initially developed in close collaboration with 
a customer who had regular maintenance schedules for 
their equipment, and wanted to understand if they were 
really being effective with their practices or not. This 
analysis determines whether an individual or a class of 
maintenance actions resulted in statistically significant 
improvement of performance or not. This sort of 
analysis is very valuable to the maintenance staff. 
For example, the maintenance staff can get feedback 
about the past and ongoing maintenance actions and 
learn whether they were/are successful in keeping the 
equipment in the desired condition. By knowing that 
a particular maintenance action did not improve the 
performance of some component of the equipment as 
it was supposed to, the maintenance staff can quickly 
implement an effective countermeasure. Furthermore, 
these insights, based on actual measurements from 
the equipment, can help maintenance operators and 
their management to improve day-to-day maintenance 
actions and revise the maintenance process for a fleet 
of equipment (e.g. change the provider). 

Predictive Analytics
These technologies are mainly concerned with the 
prediction of future events such as failures, based 
on learning over historical data. Failure prediction 

is a key problem in predictive maintenance which 
belongs to the category of predictive analytics. We 
offer an extensive portfolio of algorithms for failure 
prediction that handle a variety of use cases. A detailed 
description of these technologies is the subject of 
“Failure Prediction Use Cases.”

Prescriptive Analytics
These technologies generate recommendations for the 
maintenance personnel or management that result in 
reduction of failure rates while meeting operational 
objectives. Examples of prescriptive analytics include 
the following.
Operating envelope recommendation
This technology learns, from the historical data, 
the subset of operating conditions that results in 
the reduction of failure rate while achieving the 
operational targets. (Similar approaches can be used 
to reduce the cost of operations too, but they do not 
fall under the umbrella of predictive maintenance). For 
instance, we have used correlation analysis to study 
the effect of operating conditions of heavy-duty trucks 
on their failure rates for one of our customers who 
was experiencing higher than usual failure rates and 
wanted to reduce the failure rate while maintaining its 
existing production. These correlations are then used 
to construct rules that provide recommendations to 
truck drivers on specific operational conditions such 
that the failure rate will decrease in the future. 
Maintenance optimization
As both analytics and human-based predictive insights, 
predictions, and recommendations increase, it is 
sometimes difficult for the maintenance team to know 
which maintenance action to take or to understand the 
global impact of a particular maintenance action. For 
instance, two predictors might recommend immediate 
maintenance of two distant pieces of equipment at the 
same time, which might be impossible given limited 
maintenance resources. To solve this problem, we are 
developing an overall optimization framework that 
takes into consideration the outputs of the predictive 
maintenance algorithms along with different cost 
estimates and operation constraints, and recommends 
a complete maintenance plan that results in maximum 
operation efficiency and minimum maintenance cost.

FAILURE PREDICTION USE CASES

Failure prediction is a key problem in predictive 
maintenance, and is concerned with estimating the 
likelihood that an undesirable condition or event is 
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going to happen early enough so that a countermeasure 
can be implemented to prevent the condition/event 
from happening. Failure prediction techniques mainly 
depend on encoding information about pre-failure 
conditions of the equipment and then monitoring 
real time sensor and event data searching for these 
conditions. We offer a portfolio of techniques for 
failure prediction that address a variety of use cases. 
This portfolio includes event-based, sensor-based, and 
model-based failure prediction.

Event-based Failure Prediction
In cases when collection of raw sensor data is 
expensive or infeasible, usually only event data is 
available for analysis. In these cases, time-stamped 
events are generated based on real-time sensor data 
at the equipment level and then transmitted to the 
operational database. We have developed technology 
that treats these events as long temporal sequences 
that can be mined for possible relationships using 
association rule mining(3) .

Although the initial motivation behind association 
rule mining was to analyze market basket data, 
new approaches have been developed to address 
problems in various domains such as environmental 
monitoring, bioinformatics, telecommunications, etc. 
These approaches tackle the problems such as mining 
frequent or rare patterns in temporal or non-temporal 
sequences of events. Our technology modifies one of 
the existing approaches and mines the temporal event 
sequences to find significant co-occurrences of events 

within pre-specified time windows. Once identified, 
these co-occurrences will define temporal association 
rules that can predict future failures. Then, these rules 
can be applied to the incoming events in order to predict 
the potential occurrence of failures within a time-
window that makes business sense, namely it allows 
for corrective maintenance actions. The technology 
deployment pipeline is presented in Fig. 2. 

We have applied our technology on event data 
generated by heavy mobile mining equipment 
for one of customers and some rules with the 
highest confidence from the analysis are shown in 
Table 1. These rules often provide significant value. 
For example, even in the absence of controlled area 
network (CAN) bus data from vehicles’ sensors, we 
can successfully predict engine problems based on 
the fourth rule (see Table 1). This rule indicates that 
if some equipment experiences electrical system and 
propulsion problems, then it will have engine problems 
within 10 days with 64% confidence (the pre-specified 
window length was 10 days). 

Our results on heavy mobile equipment demonstrate 
the potential of our technology for failure prediction 
use cases when only equipment event data is available.

Sensor-based Failure Prediction
Sensor measurements, when available, encode rich 
information about pre-failure conditions. First, using 
machine-learning algorithms, failure prediction models 
are generated based on the pre-failure conditions 
learned from historical sensor measurements. Next, 
these models are applied to real-time data in order to 
predict failures. Two approaches to failure prediction 
from sensor data are given below:
Failure prediction using anomaly detection
In this prediction method, models of the normal 
behavior of a group of sensor measurements are 
learned from historical sensor data, and then any 
deviations from this normal behavior are detected 
during equipment operation. The anomaly detection 
algorithm learns normal clusters of data based on 

On-demand 
maintenance

Decision making

Real-time event tracking

Event prediction

Fig. 2—Event-based Failure Prediction System.
Association rule mining over a temporal sequence is used to 
learn prediction rules for failures.

Event Description Prediction Impact Confidence

E71, E72, 
E83

Electrical system, 
Engine, Tires S23 Standby 99%

E71_A Engine S23 Standby 96%

E77 Hydraulic oil leak S23 Standby 95%

E71, E78 Electrical system, 
Propulsion E72 Engine 64%

TABLE 1. Failure Prediction Rules 
Rules for failure prediction that were learned with heavy mobile 
equipment.
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frequently in the field, Hitachi’s technology leverages 
physical models of equipment to simulate these 
failures (see Fig. 4). 

The physical models are defined using mathematical 
equations that represent the electrical and mechanical 
systems of the equipment. These models are built 
through collaboration with internal domain experts 
and through open innovation with partners. One of 
Hitachi’s partners has been PARC (Palo Alto Research 
Center), a Xerox Company, with whom it has jointly 
developed physical models of various system 
components. Moreover, Hitachi has included some 
failure modes and the degree of failure in the physical 
models. Therefore, its physical models can simulate 
data corresponding to pre-specified failure modes and 
pre-specified degrees of failure.

Having physical models, it is possible to augment 
field-generated data with simulated data to learn more 
accurate classification-based predictive models. Hitachi 
has successfully utilized its domain knowledge to create 
physical models along with data analytics to improve 
predictive maintenance algorithms in several domains.

SOLUTIONS ON COMMON ANALYTICS 
FRAMEWORK AND LUMADA

As we have seen, there is a need for different predictive 
maintenance solutions across verticals. The traditional 
approach to meeting such a need is to create bespoke 

the spacing between sensor measurements, and then 
calculates an anomaly score for each new measurement 
based on the distance of this measurement from the 
pre-learned clusters. This algorithm is suitable for use 
cases where there are a lot of sensor measurements 
related to normal operation, but not enough historical 
incidents of failures. Hitachi has successfully applied 
the algorithm to predict failures for a variety of 
customer use cases including heavy equipment such 
as generators. 
Failure prediction using classification 
In this prediction method, classification algorithms(4) 
are used to learn complex pre-failure patterns based 
on historical failure incidents. The algorithm partitions 
the historical time series data into normal and pre-
failure windows, and then derives a binomial classifier 
that differentiates between normal and pre-failure 
conditions. In comparison to the anomaly detection 
method, this method is able to recognize the particular 
type of failure, but it needs to have a sufficient 
number of samples of historical incidents for each 
failure type. This method has been quite successful 
in Hitachi customer environments. It has used this 
method, among other things, to predict failures in 
thermodynamic equipment such as chiller systems, 
and in vehicles maintained by equipment vendors 
and fleets. Fig. 3 shows a subset of sensor data used 
for predicting failures in thermodynamic equipment 
along with the probability estimated by the predictor.

Model-based Failure Prediction 
Classification-based failure prediction models require 
a number of failure instances of different types from 
historical data. In cases where failures do not occur 

Physical model

Simulation

Equipment Simulated data

Statistical model

Field data Prediction

Failure mode
Degree of failure

Fig. 4—Physical model-based failure prediction.
The physical models of equipment generate simulated data 
regarding normal and faulty behavior.

Fig. 3—Sensor-based Failure Prediction.
Sensor measurements are provided to multiple classifiers which 
calculate the probability that different failures will happen in 
the future.
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solution for the automobile industry, we could simply 
invoke the previously-built solution component. 
(3) Analytics applications in the Industrial space often 
have limited applicability and adoption because they 
are designed by and for IT experts. Our framework 
for predictive maintenance is designed to empower 
domain experts. It does this by allowing the domain 
experts to express their analytics intuition and build 
their own dashboards with a very simple user interface. 

CONCLUSIONS

In this paper we presented a portfolio of data analytics 
technologies for predictive maintenance that were 
developed in close collaboration with customers. 

Our technologies use data mining and machine 
learning algorithms to discover actionable insights 
about the history of the equipment, predict failures 
before they happen, and recommend countermeasures 
to prevent these failures from happening again. 
Our solutions are built on top of Lumada and a 
common framework that offers a library of predictive 
maintenance solution components.
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solutions from problem to problem and industry to 
industry. In contrast to this approach, we are building 
a common framework(5) and integrating into Hitachi’s 
IoT solution platform called Lumada(6) (see Fig. 5) to 
achieve a predictive maintenance framework. This 
will allow for the creation of repeatable predictive 
maintenance solutions. Our predictive maintenance 
framework is geared towards processing sensor and 
event data, and provides a rich library of predictive 
maintenance solution components. Our approach of 
having a predictive maintenance framework offers us 
several advantages: 
(1) For predictive maintenance solutions, the 
underlying architecture is often similar across verticals. 
For example, solutions need to process sensor or event 
data (or both), maintenance data, etc. Our framework 
provides the ability to manage, process, and analyze 
different types of data from structured to unstructured 
data, and from stored to streaming data. Specifically, 
it brings together data integration, advanced analytics, 
and visualization capabilities tailored to the predictive 
maintenance use cases. This dramatically reduces the 
time, effort, and money to build a new predictive 
maintenance solution. 
(2) It allows us to utilize knowledge gained in one 
domain for another domain through reusable analytics 
solution components. For example, we discovered 
that a performance degradation technology that 
we developed for chillers could also be used for 
automobiles, simply by changing the KPI. Once we 
encoded the performance degradation methodology 
developed for the chiller use case as a solution 
component, to develop the performance degradation 
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Fig. 5—Lumada IoT Platform.
The Hitachi IoT platform is used for building predictive 
maintenance solutions.
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