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F E A T U R E D  A R T I C L E S Autonomous Driving Technology for Connected Cars

1.	 Introduction

With reducing traffic accidents and the associated 
deaths and injuries being one of the major challenges 
facing the automotive sector, there is considerable 
activity in the research and development of technol-
ogy for preventive safety to assist driving and for 
autonomous driving to replace the functions of the 
human driver. Both sensing techniques for determin-
ing what is happening around the vehicle and rec-
ognition and decision-making techniques for safely 
driving the vehicle through the detected environ-
ment are important for achieving high levels of driv-
ing assistance and autonomous driving. If artificial 

intelligence (AI) is then added to this mix, it opens 
up the potential for driving in more complex envi-
ronments. This article describes work being done by 
Hitachi on technologies for recognition and decision-
making and for the application of AI to support more 
advanced autonomous driving.

2.	 Overview of Autonomous 
Driving and Work on Making 
Technology More Intelligent

2. 1 
Overview of Sensing, Recognition, Decision-
making, and Control for Autonomous Driving
Autonomous driving is implemented using sens-
ing, recognition, decision-making, and control (see 
Figure 1). Sensing means the use of stereo cameras, 
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Autonomous driving is recognized as an important technology for dealing with emerging 
societal problems that include traffic accidents, the aging population, and the diminish-
ing workforce. Various companies are accelerating the pace of technology development 
with the aim of extending use of the technology from highways to ordinary roads from 
2020 onwards. In contrast to the comparatively uniform driving environment on high-
ways, the situation on ordinary roads is more complex and so calls for more advanced 
forms of autonomous driving. In order to achieve autonomous driving suitable for 
ordinary roads, Hitachi is striving to apply and commercialize sensing and decision-
making techniques and AI. This article describes examples of work on dynamic maps, 
model predictive control, and an AI implementation technique, and also the prospects 
for the future.

Intelligent Technology for More 
Advanced Autonomous Driving
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radar, or other sensors to detect objects. Recognition 
is made up of “sensor fusion,” meaning the combin-
ing of sensing information from the various sensors 
(vehicles, pedestrians, signage, road markings, and 
so on); the precise identification of vehicle location; 
“map fusion,” meaning the merging with the map of 
objects identified by sensing; “motion prediction of 
objects,” meaning predicting the behavior of objects 
around the vehicle; and “dynamic map generation,” 
meaning the creation of path, spatial, and risk maps 
to express this information as data in a form that can 
be used for decision-making and control.

Decision-making and control, in turn, is made up 
of vehicle movement planning, the generation of can-
didate trajectories, trajectory evaluation, and driving 
the vehicle along the chosen trajectory. Vehicle move-
ment planning manages the status of all aspects of 
autonomous driving and generates the overall vehicle 
movement at the lane level (such as choosing which 
lane to drive in). The generation of candidate trajecto-
ries is performed based on factors such as the dynamic 
characteristics of the vehicle. Trajectory evaluation 
takes account of upcoming risks to choose the best of 

the candidate trajectories. Driving the vehicle along 
the chosen trajectory is done by calculating the control 
command values to send to the actuators.

2. 2 
Work on Making Technology Intelligent Enough 
for Level 4 and Ordinary Roads
As extending the use of autonomous driving to include 
ordinary roads in the future and reaching level-4 or 
level-5 automation will involve dealing with situa-
tions that are difficult to handle using conventional 
rule-based control, the adoption of new intelligent 
technologies such as deep learning or model predic-
tive control will be needed. Technical innovation over 
recent years has made possible better-than-human 
levels of sensing and identification in image process-
ing applications using deep learning, and also the 
ability to predict the movement of nearby vehicles and 
other objects. It has also become possible to generate 
more appropriate vehicle paths than can be obtained 
by rule-based designs, including by using model pre-
dictive control to take account of the predicted move-
ments of surrounding objects when generating paths.
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Figure 1 — Block Diagram of Autonomous Driving System
Autonomous driving is implemented using sensing, recognition, decision-making, and control.

C2X: car to X   TCU: telematics communication unit   MPU: map position unit   GNSS: global navigation satellite system
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While these calculations tend to impose a heavier 
computational load than past methods, embedded 
system devices capable of such computation have 
become available and are starting to be installed on 
vehicles equipped for autonomous driving. However, 
the large number of different deep learning algo-
rithms that exist means that appropriate methods 
need to be chosen and the computational load reduced 
before this technology can be put into practical use. 
Although still at the research and development phase, 
it is anticipated that this technology will be crucial to 
autonomous driving.

3.	 Dynamic Maps

Vehicles equipped for autonomous driving need to 
recognize with high accuracy what is happening in 
the driving environment (other vehicles, intersec-
tions and so on) based on data from sensors and 
maps, and to pass this information to the autonomous 
decision-making (control) functions with a certain 
data representation. A typical example of the data 
representation already in use is the Advanced Driver 
Assistance Systems Interface Specification (ADASIS), 
an industry standard interface to provide static digital 

maps for advanced driver assistance systems (ADASs). 
This standard has been applied to the development 
of longitudinal speed control techniques, such as 
adaptive cruise control (ACC). It provides a way of 
representing relative position in information about 
the surrounding environment along the road (vehicle 
path). However, at this moment, it is not fit for auton-
omous driving including lateral driving control (i.e., 
steering control), because it has yet to be applied to 
representing detailed topography at the level of lanes. 
Moreover, since the lane-level detailed representation 
leads to larger data size and complexity in use, ways 
of representing this data efficiently and easily will be 
needed to enable control by electronic control units 
(ECUs) with limited computing and memory capacity.

Accordingly, Hitachi has developed a hierarchical 
hybrid data representation method to efficiently and 
flexibly provide the detailed lane-level information 
about the surrounding environment that is needed for 
autonomous driving. The method has the following 
two main features (see Figure 2).
(1) A two-layered structure,  an abstracted representa-
tion at the road level (layer 1) and a detailed represen-
tation at the lane level (layer 2)
(2) Two different coordinate systems for representing 
information about the surrounding environment using, 

40

40

30

30

Layer 1: ADASISv2 protocol (road-level)

Layer 2: Extended protocol (lane-level)
Spatial mapPath map

(2)

(1)

O�set 0

O�set 100

Lane 1
Lane 2

Lane 4

Lane 1
Lane 2

Lane 4Lane 3

Lane 3

Lane 11

Lane 11

Lane 21

Lane 21

Lane 31

Lane 31

(Opposite)

O�set 120

O�set 30

O�set 100

Path 8
Path 9

Path 10

Path 8

Path 10
Recommended lanes

Stub Stub

Figure 2 — Structure of Dynamic Map (Extension of ADASISv2 Protocol)
A two-tier structure is used that is split between an abstracted representation at the road level (layer 1) and a detailed representation at the lane level 
(layer 2) (1). Similarly, two different coordinate systems are used to represent information about the surrounding environment using, respectively, coor-
dinates relative to the vehicle path and relative spatial coordinates (2).

ADASIS: advanced driver assistance systems interface specification
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respectively, coordinates relative to the vehicle path 
and relative spatial coordinates

Layer 1 of the two-layered structure uses the 
ADASIS protocol that is already widely deployed in 
actual products, while layer 2 provides the additional 
representation required for autonomous driving. This 
provides support for autonomous driving while still 
preserving compatibility with existing products using 
the ADASIS protocol. For the two different coordi-
nate systems, the method for representing informa-
tion relative to the vehicle path provides a quick way 
to assess the surrounding environment at the mac-
roscopic level, while the relative spatial coordinates 
enable a precise microscopic assessment. The ability to 
choose between the two different ways of representing 
information as needed facilitates the flexible devel-
opment of diverse ADAS applications that include 
autonomous driving.

In terms of how the two coordinate systems are 
used, whereas the coordinate relative to the vehicle 
path, mainly used for longitudinal (long-term) control, 
requires the provision of information over a wider 
area in the order of kilometers, the relative spatial 
coordinate requires at most several hundred meters or 
so considering the high precision required for lateral 
control. With this property in terms of requirements, 
and by limiting the scope of information provided 
using relative spatial coordinates to just the immediate 
vicinity, the amount of data provided to the decision-
making (control) functions of autonomous driving can 
be considerably reduced.

4.	 Use of AI for Recognition 
and Decision-Making

Expanding the use of autonomous driving from high-
ways to ordinary roads will require advanced recogni-
tion and decision-making techniques that include not 

only the sensing of pedestrians, vehicles, and other 
objects, but also the ability to predict their move-
ments. It will also require the ability to take account 
of these movement predictions when making turns 
at intersections so as to select a path and speed that 
are both safe and comfortable.

Past methods have mainly involved the devel-
opment of rule-based algorithms that itemize the 
potential movements of nearby objects based on what 
is happening around the vehicle and then drive the 
vehicle in such a way that it can cope with these pos-
sibilities. Unfortunately, because the number of com-
binations of potential movements by objects when 
driving on ordinary roads is so large, designing in 
the ability to cover all of these without any omissions 
in impractical. Instead, Hitachi has been looking at 
using AI to enable autonomous driving in complex 
environments.

AI can be broadly divided into three different tech-
niques, and Hitachi is investigating the best ways of 
using each of these (see Table 1).

The first is the neural network. Hitachi is investigat-
ing techniques for detecting nearby objects from cam-
era video with greater precision, and for performing 
learning on the movements of other nearby vehicles 
and pedestrians in order to predict their future move-
ments. In parallel with this study of algorithms, other 
work is aimed at simplifying (pruning) the resulting 
networks. This is explained further in the following 
section.

The second technique is big data analytics. 
Hitachi has developed its own AI called Hitachi AI 
Technology/H (AT/H). AT/H can automatically 
identify the elements that correlate strongly with key 
performance indicators (KPIs) in large and complex 
data sets. One example is a study that is using AT/H 
to analyze the movements of a vehicle under manual 
control and the surrounding conditions so that the 

Type Machine-learning-based  
(neural networks)

Using statistics and probability  
(big data analytics)

Algorithm-based  
(model predictive control)

Features Uses machine learning for automatic 
learning of characteristic values

Uncovers correlations in large data sets 
that would not be noticed by people.

Simple technique for using approximate 
models to solve complex calculations

Applications
•	 Better sensing by cameras
•	 Prediction of behavior of nearby 

people or vehicles, etc.

•	 Reduce passenger stress
•	 Identification of driver characteristics

•	 Functions that require high reliability  
(such as trajectory planning)

Table 1 — Uses for AI Targeted by Hitachi
AI can be broadly divided into three types and Hitachi is investigating the best uses for each.
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findings can be incorporated into vehicle control in 
order to achieve reliable and comfortable autonomous 
driving that is closer to that of a human driver.

The third form of AI is model predictive control. 
This is described in more detail below.

4. 1 
Pruning Technique for Neural Networks
Figure 3 (a) shows a simple representation of how a 
node works. As shown in the figure, the input signals 
(X1, X2, and X3) are multiplied by their weighting 
coefficients (W1, W2, and W3) and the sum of the 
results is output. Figure 3 (b) shows an example of 
a three-layer neural network using these nodes. The 
neural network requires a large number of multiplica-
tions and additions for each node, making it difficult 
to implement in real time on an ECU with limited 
computing and memory capacity.

To overcome these problems, Hitachi has been 
investigating a pruning technique that reduces the 
computational load while keeping the impact on sens-
ing accuracy to a minimum by omitting calculations in 
which the weighting coefficient is small. Figure 3 (c) 
shows an example of a pruned network. This provides 
an efficient way to implement large neural networks 
on ECUs when they are needed for autonomous driv-
ing with high precision.

4. 2 
Model Predictive Control
Model predictive control predicts the control output 
x for a control input u, and searches for the control 
input u that minimizes a cost function H representing 
control performance within a fixed time (t), treat-
ing it as an optimization problem. Figure 4 shows an 
example of model predictive control used to gener-
ate vehicle trajectories. It is made up of the genera-
tion of candidate trajectories and the cost function 
calculation.

The generation of candidate trajectories searches 
for the optimal trajectory using an optimization solver 
that works by testing the vehicle trajectories output 
by the cost function calculation. Optimization solvers 
can be broadly divided into iterative methods that 
use the derivative of the cost function, and heuristic 
methods that search for the solution directly using 
trial and error. While iterative methods impose less 
of a computational load, they risk getting stuck on a 
local solution that is not the best possible. Heuristic 
methods, in contrast, although able to search for the 
optimal solution over a wide range, impose a heavy 
computational load because they work by trial and 

Figure 3 — Neural Network Pruning Technique
The technique reduces the computational load while maintaining sens-
ing accuracy by omitting calculations in which the weighting coefficient 
is small.
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Figure 4 — Generation of Trajectories Using 
Model Predictive Control
The generation of trajectories using model predic-
tive control includes both generating candidate 
vehicle trajectories and calculating a cost function.

ABC: artificial bee colony algorithm
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error. Fortunately, advances in computers over recent 
years have opened up the possibility that the cal-
culations can be performed fast enough for use in 
real-time control. Accordingly, Hitachi undertook 
a comparison of various heuristic methods (genetic 
algorithms, particle swarm optimization, and the arti-
ficial bee colony algorithm) for use in this way, select-
ing the artificial bee colony algorithm on the basis 
of its ability to handle a large number of variables 
(scalability), ability to avoid local solutions, execution 
speed, and ease of parallel implementation.

The cost function H calculates the suitability of 
each trajectory, using the candidate future vehicle 
locations x (k) (k=0, 2, … n) output by the generation 
of candidate trajectories as its inputs. The cost func-
tion H is made up of two terms: H1 indicating the 
likelihood of a collision with a moving object and 
H2 indicating the level of ride comfort. The colli-
sion likelihood H1 is obtained by integrating the risk 
map output by the function for motion prediction 
of objects over the region S occupied by the vehicle. 
As the level of ride comfort is deemed to be better 
the lower the vehicle acceleration or rate of change 
of acceleration, H2 is calculated by integrating the 
squares of these two parameters over time. In this way, 
the calculation is able to determine a trajectory for the 
vehicle through a complex environment encompassing 
a number of moving objects that avoids collisions and 
maintains ride comfort.

5.	 Conclusions

Along with more advanced autonomous driving and 
driving assistance and broadening their scope of 
application, the systems used for driving also require 
a high level of safety. Together with evaluation and 
testing techniques, Hitachi intends to continue work-
ing toward the early implementation of autonomous 
driving systems that can help overcome societal chal-
lenges by developing the recognition, decision-mak-
ing techniques, and intelligent technologies described 
in this article.
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