
Hitachi Review Vol. 61 (2012), No. 5        183 

Cyber-physical MBD for Multi-physics Automotive Systems

Sujit S. Phatak

DJ McCune

George Saikalis, Ph.D.

Yasuo Sugure

OVERVIEW: The need for CPSs derives from the complexity of modern 
automotive embedded systems, which can contain more than 100 ECUs, 
a large ROM capacity, and a large amount of software code. Another 
issue is that traditional design methodologies find it difficult to cope when 
fundamental hardware problems are identified late in the development 
process, during the validation phase. The MBD approach is one possible 
solution to these issues and it lays the foundation for CPSs.

INTRODUCTION
THE defining feature of cyber-physical systems (CPSs) 
is their close integration between physical processes 
and systems on one hand and computational systems 
on the other(1). CPSs integrate the dynamics of physical 
processes with those of the software and network, 
providing abstractions for modeling and design as well 
as analysis techniques suitable for integrated systems. 
In contrast to traditional embedded systems, where the 
emphasis is more on operation as a standalone device, 
CPSs emphasize the network of interacting systems. 
Similarly, while traditional embedded systems focus on 
the computational components, CPSs primarily focus 
on the interfaces between the computational elements 
of the system. Their scope of application covers all 
sensor-based control systems, embedded systems, 
and autonomous systems. These cover a very wide 
range, from device-based systems such as automotive 
systems, entertainment and home appliances to 
integration systems such as social infrastructure, 
energy, freight and transportation, aeronautical and 
space applications, and healthcare, and also technical 
platforms such as manufacturing systems.

The mechatronic control systems that are typically 
implemented in automotive applications, such as 
engine control, transmission control, throttle control, 
and braking, typically involve multiple complex 
physical systems with dedicated embedded controllers 
that communicate with each other via a vehicle 
network, such as Controller Area Network (CAN) 
or FlexRay. Model-based design (MBD) is adopted 
as a way of making the design process for these 
complex system more efficient(2). The system design 
stage integrates models of physical system behavior 
(also called “plant models”) with controller models 
to produce an abstracted system implementation. 

The controller models can be implemented either 
at the algorithm level, using popular tools such as 
MATLAB*1/Simulink*1, or they can be implemented 
at a lower abstraction level using virtual central 
processing unit (CPU) modeling techniques.

Virtual CPU modeling(2) involves development of a 
software model of the microcontroller hardware itself. 
This microcontroller model can then be integrated with 
the behavioral models of the plant (physical system) 
so that realistic system performance measurement and 
validation can be performed. This approach allows 
concurrent development of the plant models and 
control software applications, and also their validation, 
including the realtime operating system (RTOS) and 
device drivers.

Sometimes the system may consist of multiple 
plant models (physical systems) representing different 
components of the mechatronic system that need to be 
implemented in different domains, and that need to 
be connected to a controller (computational system) 
via some interface. Together, these elements form a 
mechatronic CPS. 

This article reviews the basic approach to 
implementing a CPS adopted at the Automotive 
Products Research Laboratory of Hitachi America, 
Ltd., and describes a CPS case study in the form of a 
gasoline fuel pump that was implemented as a multi-
domain co-simulation platform(3).

NEED FOR CPS IN AUTOMOTIVE 
APPLICATIONS
Challenges for Automotive Embedded Systems

The automotive embedded systems used in 
different parts of modern vehicles (including the 
powertrain, transmission, vehicle dynamics, and 
infotainment) can be very complex, consisting of 
more than 100 electronic control units (ECUs). These 
ECUs are microcontroller-based embedded systems. *1  MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
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Typically, each sub-component of the physical system 
has a dedicated ECU. Automotive network protocols 
such as CAN and FlexRay are used to link these ECUs 
in a network. 

Modern automotive applications often require 
more than 4 Mbyte of read-only memory (ROM) 
(program memory), which stores a dedicated 
application program. The size of software code 
is also increasing exponentially. It is estimated to 
grow more than 1,000 times in the next 20 years. In 
contrast, the capacity of the microcontroller hardware 
(computational system) typically grows by only 20 
times over 10 years. To cope with this gap between 
increasing code size and hardware capacity, and 
to improve cycle performance and reliability, it is 
anticipated that multi-CPU or multi-core architectures 
will be required in the near future.

Inefficiency in Traditional Design Methodology
Traditionally, automotive embedded controller 

development has often followed the V-cycle shown 
in Fig. 1.

The V-cycle is broadly divided into two phases, the 
design phase and the validation phase. The vertical 
axis shows the level of abstraction while the horizontal 
axis represents time. The design phase begins with 
the concept design at a high level of abstraction. This 
takes place at the car maker or original equipment 
manufacturer (OEM). Typically, the process then 
proceeds through progressively lower levels of 
abstraction, to system design at a tier-one supplier and 
then to the actual components and hardware supplied 
by a tier-two supplier. This is the implementation 
phase, and is followed by the validation phase. This 
begins with unit validation, which happens at the same 
level of abstraction as the design implementation. Next 

is system validation, which represents a higher level 
of abstraction, with the final product as the end result.

A problem with this traditional V-cycle is that, 
if a fundamental hardware problem is not detected 
until the validation phase, going back to the design 
phase to identify its cause is not always time- and 
cost-effective. It is important to identify any inherent 
hardware problems early in the design phase, before 
investing in hardware development. Also important 
for business expansion and innovation is the research, 
development, and testing of future advanced system 
architectures (hardware and software).

MBD is one possible solution to these problems. 
The MBD approach is also called “model in the loop 
simulation” (MILS). It lays the foundation for CPS 
development. Fig. 2 shows the V-cycle when MBD 
and CPS are incorporated.

The figure shows how use of MBD concentrates 
activity in the design phase. This includes algorithm 
design, behavior simulation, and rapid prototyping, 
which are carried out during concept design. Initially, 
signal flow or conserved system simulators like 
MATLAB/Simulink or Synopsys*2 Saber*2 are used to 
develop behavioral or mathematical models. 

This is followed by component simulation at 
a lower abstraction level. The main development 
activities here are ECU hardware specification, basic 
input/output system (BIOS) software coding, RTOS 
configuration, and autocode generation. In terms of 
MBD, this phase involves developing detailed models 
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Fig. 1—Traditional V-cycle Development Process.
The typical development cycle for automotive electronic control 
units (ECUs), including the role of the respective contributors.
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Fig. 2—V-cycle Incorporating MBD and CPS Approach.
The role of MBD and the CPS approach in V-cycle development, 
including the different activities involved.

MBD: model-based design   CPS: cyber-physical system    
ECU: electronic control unit   CPU: central processing unit    
ASIC: application-specific integrated circuit    
BIOS: basic input/output system   RTOS: realtime operating system

*2  Synopsys is a registered trademark of Synopsys, Inc. and Saber is a 
registered trademark of SabreMark Limited Partnership and is used 
under license.
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physical location of models may or may not be on 
the same personal computer (PC) in the case of a co-
simulation bus implementation. Co-simulation also 
requires that the simulators support its use, or that it 
can be implemented using a high level programming 
language such as C/C++. 

Use of a co-simulation bus offers several other 
benefits. (1) It enables a multi-domain/multi-physics 
system simulation where models stay in their native 
domain but work together. (2) The multi-domain 
interaction yields a robust design methodology. (3) The 
co-simulation bus also provides a framework for 
implementing the interface between the computational 
and physical systems of the CPS.

Virtual-CPU-based CPS
Fig. 4 shows a simplified block diagram of a 

virtual-CPU-based CPS.
The system architecture for a CPS based on a 

virtual CPU is an extension of the Simulink-based 
CPS architecture. In this case, the control model is 
implemented using a virtual CPU simulator, which 
can emulate a microcontroller model or virtual CPU 
model for the specific microcontroller specified by 
the user. Microcontroller models are available for the 
main automotive semiconductor suppliers, including 
Freescale Semiconductor, Inc., Renesas Electronics 
Corporation, and Infineon Technologies AG. 

These models emulate the microcontroller 
hardware and can execute the same object code as 
the actual hardware. This simulator also gives access 
to internal information about the microcontroller 
hardware, such as the program counter, instruction 
cycles, interrupts, and software states.

As in a real microcontroller, these models process 
analog or digital voltage signals and cannot work 
with engineering units directly. Hence an additional 
sensor model (sensor models in Fig. 4) needs to be 

of both the physical system (plant) and the ECUs and 
control system (computational system). 

The computational system can be built in Simulink 
or using a virtual CPU. This gives two different 
configurations for the CPS. Typically, when using 
MBD, the next step after developing a Simulink-
based computational system is to perform autocode-
generation and implement the generated software on 
a real hardware ECU. This is called “processor in the 
loop simulation” (PILS). The work described here, 
however, adopts a new approach whereby a simulation 
of the processor (CPU) is also included in the model. 
This approach could be called “virtual PILS,” although 
the term “virtual CPU modeling” is used here for 
consistency. The following section gives a detailed 
description of CPS using both the Simulink and virtual 
CPU methods.

CPS FOR AUTOMOTIVE APPLICATIONS
Simulink-based CPS

Fig. 3 shows a simplified block diagram of a 
Simulink-based CPS.

The system consists of two main parts: the plant 
model (physical system) and the control / soft ECU 
model (computational system). The plant models 
model the physical systems of the vehicle, such as 
the engine for a gasoline car or the electric motor of 
a hybrid electric vehicle (HEV) or electric vehicle 
(EV). The control models implement the logic used 
to control the plant models in such a way that they 
achieve the desired functionality. These models also 
provide visualization of the control parameters. 

Simulink is used for simulation, and communication 
between the plant and the control models is in terms 
of physical quantities or parameters represented in 
engineering units (Pascals for pressure or Amperes for 
current). The system uses feedback control whereby 
the user/driver inputs are applied to the plant model 
together with the actuator inputs determined by the 
control algorithm running on the control model. An 
important point to note here is that the link between 
the plant and control models is handled within the 
simulation system via a direct connection between 
the models.

In the case when different models running on 
different simulators are used, a co-simulation needs 
to be implemented to provide the connection between 
the simulators. Co-simulation can be achieved by 
a direct connection between the models if their 
respective simulators support such a function, or it 
can be achieved using a co-simulation bus(4). The 
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Fig. 3—Simulink-based CPS.
This simplified block diagram shows the CPS simulation model.

OEM: original equipment manufacturer   HEV: hybrid electric vehicle 
EV: electric vehicle
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the pump and inlet valve models of the actual pump 
were implemented in a hydraulic simulator running 
on a second PC.

The computational system (control model) was 
implemented using Simulink (see Fig. 6). Fig. 7 shows 
the complete integrated Simulink-based CPS for the 
gasoline fuel pump.

Proportional-integral (PI) control was used to 
generate the controller output based on the difference 
between the target pressure and the pressure feedback 

implemented to act as an interface and perform the 
required signal conditioning between the plant model 
and the virtual CPU model. In other words, this block 
handles analog and digital input and output (I/O) and 
converts engineering units into voltage signals, which 
can be processed by the virtual CPU model. The rest 
of the system architecture remains the same, including 
the feedback loop and the user/driver inputs.

Another important point to note is the use of co-
simulation. The plant models and sensor models are 
typically implemented using MATLAB/Simulink 
while the virtual CPU is implemented using a 
dedicated virtual CPU simulator as described above. 
Therefore, a co-simulation is required between these 
simulators and can be achieved either via a direct one-
to-one connection or by using the co-simulation bus. 
While a direct one-to-one connection is available for 
systems that run entirely within Simulink, this is not 
supported for some other simulators, in which case 
the co-simulation bus approach must be used. This is 
described in detail in the case study in the next section.

AUTOMOTIVE CPS CASE STUDY: 
GASOLINE FUEL PUMP SIMULATION

A gasoline fuel pump simulation model developed 
by Hitachi was used to investigate CPS implementation 
by comparing the results obtained using the Simulink-
based and virtual-CPU-based approaches respectively. 

Simulink-based CPS for Gasoline Fuel Pump
A physical system model (plant model) was 

implemented using a co-simulation bus (see Fig. 5).
The physical system of the gasoline fuel pump 

consists of three parts: a driver circuit simulated 
using an electromechanical simulator, and separate 
pump and inlet valve models, which are simulated 
using the hydraulics simulator. Using a co-simulation 
bus, the driver circuit was implemented in the 
electromechanical simulator running on one PC and 
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Fig. 4—Virtual-CPU-based CPS.
The simplified block diagram 
of the CPS shows how it now 
includes a virtual CPU model 
instead of the traditional 
Simulink-based control model.
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Fig. 5—Gasoline Fuel Pump Physical System.
This block diagram of the gasoline fuel pump system and its 
simulation model represents a multi-PC implementation with a 
co-simulation bus.
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Fig. 6—Gasoline Fuel Pump Computational System.
The simulation model of the gasoline fuel pump control system 
interfaces to a co-simulation bus.
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Simulink portion of the virtual CPU as an interface to 
the co-simulation bus since the virtual CPU simulator 
did not directly support the co-simulation bus. Fig. 9 
shows the complete system using the virtual-CPU-
based CPS for the gasoline fuel pump.

This system enabled the virtual tuning of the PI 
control algorithm, which will help accelerate overall 
pump controller development in the future.

Correlation between Simulink-based CPS and 
Virtual-CPU-based CPS

After adopting both the Simulink-based and virtual-
CPU-based approaches for CPS implementation, the 
next step was to observe the relationship between the 
behaviors of the pump simulation using these two 
approaches under identical simulation conditions and 
configuration (see Fig. 10).

The comparison shows a very good correlation 
between the Simulink-based and virtual-CPU-based 
approaches for the gasoline fuel pump control system 
under identical simulation configurations (same target 
pressure at different engine RPMs).

at a constant battery voltage input level. Since the 
final goal was to implement this control algorithm 
on hardware (virtual in this case), and as triggering 
the solenoid in response to the controller output costs 
energy, pulse width modulation (PWM) duty-cycle 
control was added to the original control. While 
the solenoid had to be fully triggered to open the 
inlet valve, less force was required for holding it 
open and therefore the current through the solenoid 
could be reduced. The percentage reduction in this 
solenoid current was determined by the PWM duty 
factor. Based on several tests and on experience, data 
were gathered on the relationship between the duty 
factor for various start angles and the revolutions per 
minute (RPM) and battery voltage. From these were 
produced a look-up table that could be used to obtain 
the duty-cycle value(1). The PWM based control also 
enabled the use of the virtual CPU based approach for 
implementing this CPS.

Virtual-CPU-based CPS for Gasoline Fuel Pump
The first requirement for the virtual-CPU-based 

CPS was to obtain the object code for the software 
control algorithm used in the Simulink CPS. This was 
achieved using auto-code generation to generate the 
application layer of the software from the Simulink 
control model. The virtual CPU used was a Renesas 
Electronics Corporation’s SH-2A*3 microcontroller. 
Other development included hand coding the device 
driver software for the SH-2A and configuring the 
RTOS to be used for this application (see Fig. 8).

The virtual CPU simulation itself combined two 
simulators: the virtual CPU simulator and MATLAB/
Simulink. Accordingly, the virtual CPU simulation 
used a direct one-to-one co-simulation between these 
two simulators. In terms of the overall system, this co-
simulation bus approach involved using the MATLAB/

Fig. 7—Simulink-based CPS for Gasoline Fuel Pump.
This Simulink-based CPS uses a co-simulation bus.
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Fig. 8—Auto-code Generation for SH-2A CPU.
The Simulink-based control model was converted into C code, 
compiled with the device drivers and RTOS, and executed on the 
Renesas Electronics Corporation’s SH-2A CPU.
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Fig. 9—Virtual CPU-based CPS for Gasoline Fuel Pump.
The virtual SH-2A control model integrates with the plant model 
of the gasoline fuel pump via a co-simulation bus.

*3  SH-2A is a trademark or registered trademark of Renesas Electronics 
Corporation.
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simulated using Simulink and later using a virtual-
CPU-based approach. Both approaches achieved a 
good correlation. An international multi-location CPS 
implementation was also tested and validated to prove 
the flexible multi-location implementation of these 
systems as a multi-physics robust design methodology.
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FURTHER ACHIEVEMENTS USING CPS
After the successful implementation of the CPS for 

a gasoline fuel pump control system at the Automotive 
Products Research Laboratory of Hitachi America, 
Ltd., a decision was made to experiment with the 
flexibility offered by the co-simulation bus approach 
for a multi-location co-simulation. The trade-off 
when a multi-location CPS implementation was 
tested was that the analysis took longer due to the 
slower data transfer time. The problem in this case 
was slower speed due to latency on the Ethernet-based 
Transmission Control Protocol/Internet Protocol 
(TCP/IP) network. At a sampling rate of 100 µs, for 
example, the co-simulation across offices in Japan and 
the USA was three times slower than the equivalent 
co-simulation run in the USA (see Fig. 11).

As shown in the figure, the gasoline fuel pump 
physical model was implemented on two PCs, one at 
the Japan office and one at the USA office, while the 
computational system model was implemented on a 
PC at the USA office. Apart from the problem with the 
data transfer time, this demonstration showed that a 
co-simulation could span two offices, one in Japan and 
the other in the USA, and proved that it was possible to 
achieve a flexible CPS implementation across offices 
in different countries.

CONCLUSIONS
This article has reviewed the basic approach to 

implementing a CPS adopted at the Automotive 
Products Research Laboratory of Hitachi America, 
Ltd., and described a CPS case study in the form of a 
gasoline fuel pump that was implemented as a multi-
domain co-simulation platform.

An automotive CPS involving a gasoline fuel 
pump was implemented to enable virtual tuning of 
the PI control algorithm and accelerate the overall 
development process. The system behavior was first 
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