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Factory and Community Energy-saving System Solutions 
for Low-carbon Society

Takaki Taniguchi OVERVIEW: As society moves towards a low-carbon future, the adoption 
of renewable energy and the utilization of previously untapped energy 
sources have grown in importance along with ongoing improvements in 
energy efficiency at manufacturing plants. Meanwhile, compliance with 
host country regulations and coordination with the local community are 
also important factors for plant construction. Hitachi supplies factory and 
community energy-saving system solutions for a low-carbon society.

INTRODUCTION
AS global carbon dioxide (CO2) emissions continue 
to increase, energy saving technologies have become 
increasingly important as momentum gathers for the 
shift to a low-carbon society based around emissions 
reduction measures.

Increasingly, manufacturing plants that consume 
large amounts of energy are adopting renewable 
energy, utilizing previously untapped energy sources 
(such as energy from plant waste heat or temperature 
differences), and installing distributed power supplies 
(such as gas cogeneration and fuel cells). Also, 
amid moves to save energy, energy service company 
(ESCO) businesses are making a major contribution 
to improving energy efficiency in the industrial and 
commercial sectors. Meanwhile a newly emerging 
requirement is to take account of the environment 
in which manufacturing plants operate, including 
business continuity planning (BCP) and integrating 
operations with neighboring communities.

In the case of new plant construction and the 
practice of operating multiple production sites, 
important factors include creating a low-carbon 
society, compliance with energy regulations in the 
host country, and integration into the communities in 
which the plants are located.

This article provides examples of energy-saving 
initiatives and community integration, and describes 
factory and community energy-saving system 
solutions for a low-carbon society.

COMPUTER-INTEGRATED FACTORY 
CONCEPT

Factory energy management systems (FEMSs) that 
integrate plant, machinery and other manufacturing 
systems with electric power, heat, and associated 

utilities systems play an essential role in achieving 
an advanced level of energy management at factories.

Manufacturing systems seek to eliminate waste and 
achieve highly efficient production through the use of 
“visualized” production information made available by 
applications such as manufacturing execution systems 
(MESs) or warehouse management systems (WMSs).

FEMSs utilize production plans and demand 
forecast information to minimize unit energy costs by 
controlling the supply and demand for the different 
forms of energy consumed at a plant. Specifically, they 
improve energy efficiency by selecting the best mix of 
energy sources, and ensure that production equipment 
operates reliably despite the use of fluctuation-prone 
renewable energy.

This approach to achieving overall optimization 
of manufacturing and energy through the integrated 
and coordinated management of these production and 
energy supply plans is the basis of Hitachi’s concept 
of computer-integrated factories made possible by 
information and control technology (see Fig. 1).

Best Energy Mix
While renewable energy systems such as 

photovoltaic or wind power generation are essential 
for eliminating consumption of fossil fuels and 
emissions of CO2, the amount of electric power 
generated by these systems varies widely depending 
on weather and climate factors.

The way to deal with this is to adopt a system 
configuration that uses gas engines or other forms 
of fuel-burning power generation for the base load 
together with storage batteries that can be discharged 
to compensate for variable demand, or fluctuations 
in the output of renewable energy. For disaster 
preparedness, meanwhile, while electric power can 
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be supplied during an emergency by renewable 
energy, batteries, and fuel-burning power generation 
equipment, this requires stockpiles of gas and oil, and 
plans for how to obtain supplies during a disaster.

Hybrid Integrated Energy Management for 
Power and Heat

Plant utility systems include the supply of heat, 
and this can be retained in piping and machinery 
without necessarily fitting thermal storage tanks. Next-
generation FEMS are designed for hybrid integrated 
energy management, using simulations of supply and 
demand that include not only electric power but also 
thermal energy such as these forms of latent heat storage 
and the generation of power from waste heat (see Fig. 2).

Demonstration Cases at Hitachi
Hitachi provides solutions for social infrastructure 

that fuse information and control. In its first step 

toward realizing this concept of computer-integrated 
factories, the company commenced a project in 
2011 that involved the installation of 940 kW of 
photovoltaic power generation, 4.2 MWh of batteries, 
and an FEMS (see Fig. 3).

Starting initially with a system for cutting peak 
demand and “visualization” capabilities associated 
with the installation of the photovoltaic power plant 
and batteries, the intention is that the project scope 
will expand to also encompass testing of a symbiosis 
autonomous decentralized energy management system 
(EMS) and integration with electric vehicle (EV) 
charging.

The symbiosis autonomous decentralized EMS 
allows multiple systems to share common objectives 
by presenting information on resources that each 
system has available to share with other systems so that 
these other systems can then autonomously determine 
the resources they want to access. Specifically, during 
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Fig. 1—Concept of Computer-integrated Factories Made Possible by Information and Control Technology.
The concept aims to achieve energy efficiency, stable plant operation, and higher productivity through the overall optimization of 
production and energy.

PDCA: plan, do, check, and act   ERP: enterprise resource planning   DCS: distributed control system   SCADA: supervisory control and data acquisition   
WMS: warehouse management system   WCS: warehouse control system   MES: manufacturing execution system   OPC: OLE* for Process Control   
FOA: flow-oriented approach   FEMS: factory energy management system   EMS: energy management system   EV: electric vehicle   
UPS: uninterruptible power system   FA: factory automation
* OLE is the name of software developed by Microsoft Corporation of the USA.
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and a chemical business producing phenolic resins.
The company’s Gunma Plant was established in 

January 1989 and has been recognized as a “Type 1 
Designated Energy Management Factory,” with 
FY2011 energy consumption equivalent to 16,940 kL 
of oil. Having maintained a focus on CO2 reduction 
and energy efficiency improvement over many years, 
a survey and analysis of energy efficiency at the plant 
was conducted jointly by Hitachi and the plant’s 
energy efficiency committee. This resulted in the 
installation of a system for utilizing waste heat.

Energy-saving Systems
This section describes the energy-saving systems 

installed at Gun Ei Chemical Industry Co., Ltd. under 
the ESCO contract (see Fig. 4).

a disaster or other emergency, the system provides 
communities with information about which resources 
the plant can make available, thereby allowing the 
communities to get access to resources in accordance 
with their own demand requirements.

Hitachi’s intention for the future is to strengthen 
community involvement through its participation 
in the Future City Model Projects run by the Japan 
Business Federation.

ESCO CONTRACT WITH GUN EI CHEMICAL 
INDUSTRY CO., LTD.

Established in 1946, Gun Ei Chemical Industry 
Co., Ltd. is a chemical company that has been 
operating for more than 50 years. Its two primary 
activities are a food business producing starch sugars 
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(3) Waste hot water recovery system
Wastewater from the production process is 

discharged from the plant after appropriate treatment, 
including steam heating. The water exits the steam 
heating process at approximately 90°C and was 
being discharged without its energy being utilized. 
Accordingly, Hitachi installed a waste hot water 
recovery system that utilizes the waste hot water to 
heat clean water.
(4) Air conditioning heat pump/chiller

The air conditioning in the headquarters and 
laboratory building is based on use of a central 
heat source, with a steam absorption chiller used 
for cooling and a steam/hot water heat exchanger 
for heating. Because the aging steam absorption 
chiller was due for upgrading, Hitachi undertook 
a comparative study of the alternatives to simply 
replacing the unit with another of the same type. Their 
ultimate conclusion was that an air conditioning heat 
pump/chiller represented the best option because it 
was able to fit in the space available while having 
lower running costs than the current systems for both 
heating and cooling.
(5) Air compressors

The three aging units at the No. 1 Saccharification 
Plant included a compressor that frequently switched 

(1) Waste steam recovery system
The production process at the No. 1 Resin Plant 

used high-pressure steam in evaporators. Steam that had 
served its purpose in the evaporators was subsequently 
released into the atmosphere as waste. Although they 
had previously considered heat recovery from this 
waste steam, it had been ruled out by the characteristics 
of the reaction in the evaporators, which could not 
tolerate back pressure at the steam outlet. Subsequently, 
Hitachi conducted a study into how heat recovery could 
be performed without creating back pressure. Based 
on the results of this study, they were able to install a 
waste steam recovery system based around a shell and 
tube heat exchanger that could recover the latent heat 
from the steam without back pressure.
(2) Waste gas steam boiler

The plant uses a sludge dryer that dries and 
deodorizes the sludge discharged from the production 
process. This in turn produces waste gas at 
approximately 400°C from the deodorizing furnace 
that was being discharged into the atmosphere without 
its energy being utilized. Two ways of recovering heat 
from the waste gas are to use it to produce either steam 
or hot water. As the Gunma Plant requires a large 
amount of steam, it chose to install a waste gas steam 
boiler at the final stage of the sludge dryer.

Photovoltaic PCS

• Demonstration of distributed EMS to strengthen BCP measures
• Comprehensive evaluation of new solutions and of the results of smart city and smart grid trials at Hitachi and elsewhere
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BCP: business continuity plan



Hitachi Review Vol. 62 (2013), No. 4      254 

It needs to be emphasized that building the organic 
energy-saving systems described in this example 
demands not only the capabilities of the ESCO 
supplier, but also the wholehearted cooperation of 
the client. That is, success is difficult to achieve if 
all of the effort is put in by one side only. Rather, it 
comes about through the ESCO supplier and client 
working together. In its search for ways of reducing 
CO2 emissions, Hitachi has for a long time enjoyed 

between loading and unloading operations and 
another that works solely for unloading operation 
for long periods of time. The No. 2 Resin Plant, 
meanwhile, which was fitted with comparatively 
new equipment, also had compressors that frequently 
switched between loading and unloading operations. 
After reviewing the conditions of the equipment 
at each plant, the No. 1 Saccharification Plant was 
upgraded with three new 37-kW units (one of which 
was inverter-driven) together with a system for 
controlling the number of units in operation, and 
the existing compressors at the No. 2 Resin Plant 
were retrofitted with the system for controlling the 
number of units in operation, and one was upgraded 
to inverter drive.
(6) Closed-loop operation of vacuum pump line

Plant water (treated bore water) is used as seal water 
for the vacuum pumps in the No. 1 Saccharification 
Plant. Because the temperature of the seal water 
affects the degree of vacuum produced by the vacuum 
pumps if it becomes too hot, the plant had previously 
used an open-loop configuration in which the plant 
water was discharged after use. After assessing the 
actual situation, a closed-loop system was introduced 
whereby the seal water is indirectly cooled by water 
from an existing cooling tower and reused.

Benefits of Introducing ESCO Contract
The energy-saving systems described above 

represented a step forward in transforming the plant 
into one suitable for a low-carbon society.
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This has prompted new initiatives involving smart 
energy networks that allow the sharing of energy 
(electric power and heat) between different users, 
with the prospect of their application in the new 
urban developments that will form part of regional 
reconstruction.

Smart energy networks combine renewable energy 
and highly efficient cogeneration systems (CGSs) to 
deliver an optimal supply of energy at the community 
level. They need to exercise optimal control within 
their geographical scope over both the consumers of 
electric power and heat energy on the demand side and 
the consolidated suppliers who serve them (see Fig. 5).

unstinting cooperation from the technical staff at the 
Gunma Plant of Gun Ei Chemical Industry Co., Ltd. 

The plan for the future is to make further reductions 
in CO2 emissions by installing cogeneration.

SMART ENERGY NETWORK
In addition to the energy efficiency and 

environmental aspects, the period since the Great East 
Japan Earthquake has seen rapid growth in demand 
in Japan for the optimized operation of a best mix of 
energy sources (electric power and heat) across entire 
communities, and their use in ways that go beyond the 
boundaries between individual companies or facilities. 
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control, and the results of the demonstration project 
will in the future be applied in other areas undergoing 
redevelopment.

CONCLUSIONS
This article has described, with examples, Hitachi’s 

concept of computer-integrated factories in which 
the overall optimization of production and energy in 
coordination with production plans achieves a best 
mix of energy sources and integrated management of 
electrical and thermal energy.

The article has also described an ESCO contract 
in which the client site and solution provider worked 

Hitachi  is  current ly col laborat ing with 
energy suppliers and others on the trialing and 
commercialization of community-level smart energy 
networks.

Demonstration Project at Tokyo Gas Co., Ltd.
The Senju Smart Energy Network is a demonstration 

project being run by Tokyo Gas Co., Ltd. at Senju 
Techno-Station in the Arakawa district of Tokyo.

This system consists of a heat redistribution 
network that consolidates demand for heat within an 
area with a high concentration of demand and combines 
cogeneration, solar heat collectors, and photovoltaic 
power generation to exchange heat and electric power 
between a number of buildings (see Fig. 6).

The project is trialing the following features.
(1) Exchange of heat between adjacent buildings
(2) Integrated control of heat supply equipment that 
makes preferential use of solar heat and waste heat 
from cogeneration
(3) Control of cogeneration and turbochillers to 
compensate for weather-related fluctuations in the 
output of photovoltaic power generation

The project has also been selected by the Ministry 
of Economy, Trade and Industry for a program trialing 
the distributed optimization of different forms of 
energy.

Table 1 lists the main equipment installed as part 
of the project.

Preferential Use of Solar Heat and CGS Waste 
Heat (Integrated Control of Heat Supply)

This system performs supervisory control of 
the hybrid heat supply system that uses a number 
of different energy sources, controlling which 
combination of energy sources to use to optimize 
energy efficiency. Specifically, the system gives top 
priority to use of renewable solar heat and previously 
unused waste heat from heating and cooling. After 
that, the priority of heat sources is: (1) CGS waste 
heat, (2) electric power generated by the CGS, and 
(3) town gas. The control scheme maximizes energy 
savings and reductions in CO2 emissions.

Demonstration Project and Future Deployment
Installation of the demonstration project systems 

succeeded in reducing CO2 emissions by 35.8% 
compared to the previous systems (actual results for 
FY2011).

The demonstrations also confirmed the favorable 
operational performance of integrated heat source 

Type Name Specifications Quantity

CGS

D: Gas engine 
cogeneration 370 kW 1

Gas engine 
cogeneration 700 kW 1

Heat sources

E: Steam-driven 
absorption heat 
pump*

• When operated for 
cooling only
Cooling : 422 kW
• When operated for 
cooling and heating
Cooling: 165 kW
Heating: 304 kW

1

F: Steam-driven solar 
absorption chiller* Cooling: 422 kW 1

G: Gas-powered solar 
absorption chiller*

Cooling: 949 kW
Heating: 813 kW 2

I: Triple-effect natural 
chiller

Cooling: 1,125 kW
Heating: 658 kW 1

H: Inverter-driven 
turbocooler* Cooling: 703 kW 1

Air-cooled chiller 
(screw type) Cooling: 132 kW 1

Vacuum water heater Hot water: 349 kW
Heating: 175 kW 1

Multi-tube flow-
through boiler 2.0 t/h 1

Photovoltaic 
panels 

CIS compound 
semiconductor 10 kW 1

CIGS compound 
semiconductor 10 kW 1

Polycrystalline 
silicon 30 kW 1

A: Monocrystalline 
silicon 40 kW 1

B: Monocrystalline 
silicon + thin film 
amorphous silicon

16.7 kW 1

Solar heat 
collector

C: Vacuum tube solar 
heat collector 130 kW (approx.) 1

J: Vacuum tube solar 
heat collector 36 kW (approx.) 1

TABLE 1. Key Equipment Installed for Senju Smart Energy 
Network
The key equipment installed for the demonstration project 
included CGS and various heat sources.

* Supplied by Hitachi
CIS: copper indium selenide  CIGS: copper indium gallium selenide
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together to achieve energy savings. A system upgrade 
achieved energy savings through measures such as 
the utilization of discharged hot water, a previously 
overlooked source of heat.

Also discussed were the smart energy networks 
that extend the energy efficiency concept beyond 
individual factories to encompass entire communities.
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