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OVERVIEW: The programs used by in-vehicle control software are 
increasing in size and complexity as vehicles adopt more advanced functions 
such as electric drive and collision prevention safety. There is also a need 
for techniques for the effi cient development of software that has high levels 
of safety and reliability in accordance with the ISO 26262 international 
standard for functional safety in road vehicles published in 2011. In 
response to these challenges, Hitachi has been working on the development 
of platform software technology for functional safety and advanced software 
verifi cation techniques.

INTRODUCTION
THE use of embedded systems in vehicles dates back 
to the 1970s when they were introduced to fulfi ll 
societal requirements such as road safety measures 
and the regulation of exhaust gas from motor 
vehicles. Nowadays, in-vehicle control software is 
used for the integrated control of the core vehicle 
functions of driving, cornering, and stopping, and 
in a variety of different components in the engine, 
powertrain, chassis, and other systems. The functional 
requirements of in-vehicle control software are 
becoming more advanced with each passing year, 
with the software set to become even larger and more 
complex(1).

This article describes the latest technology for the 
development of such large and complex in-vehicle 
control software.

TRENDS IN IN-VEHICLE CONTROL 
SOFTWARE DEVELOPMENT

Measured by lines of code, the total size of software 
used in a vehicle reached about two million lines in 
2005. More recently, the scale and complexity of in-
vehicle control software development has continued 
its steady rise due to factors such as the use of electric 
drive in hybrid and electric vehicles. It is estimated to 
reach 100 million lines of code by 2015.

In addition to control of the engine and powertrain, 
and chassis control covering systems such as brakes, 
power steering, and suspension, the in-vehicle control 
software for the next generation of vehicles will also 
include control of collision prevention safety and 
energy management. This is creating a need for more 

effective development capabilities for control and 
embedded software(2) (see Fig. 1).

As in-vehicle control software becomes larger and 
incorporates more advanced functions, there is a need 
to shorten development times without compromising 
software quality. There is also a need for safety design 
and verifi cation in accordance with the requirements of 
the ISO 26262 standard for functional safety for road 
vehicles. Hitachi has developed platform software 
technologies and advanced verifi cation techniques 
(formal verification and virtual microcontroller 
application simulation) that meet these requirements. 
The following section describes these technologies.
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Fig. 1—Overview of In-Vehicle Control Software for Next-
generation Vehicles.
In addition to the engine, powertrain, and chassis systems, the 
software needs to perform integrated management that also 
includes such things as collision prevention safety, energy 
control, and connections to external networks.

ADAS: advanced driver assistance system   
TCU: telemetrics communication unit   
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PLATFORM SOFTWARE TECHNOLOGIES 
FOR FUNCTIONAL SAFETY

Hitachi Automotive Systems, Ltd. is working on 
standard software platforms for signifi cantly shortening 
the time taken to develop embedded software for 
vehicles while also reducing its cost and achieving 
higher reliability. Hitachi’s standard platform software 
for compliance with functional safety standards and 
industry standardization [such as the Automotive Open 
System Architecture (AUTOSAR)] (see Fig. 2) can run 
on the microcontrollers used mainly for powertrain 
systems such as the engine or inverter, and for brakes 
and other chassis systems.

The structure of the standard platform software 
is based on the industry standard AUTOSAR 
specifi cation (ICC1). Also, application layer software 
developed by Hitachi’s customers or its product design 
departments interfaces with the platform software 
via a run-time environment (RTE). Accordingly, by 
complying with the RTE interface specifi cations, the 
application layer software can minimize the infl uence 
of differences in hardware such as the choice of 
microcontroller or the circuit design of control units.

Also, to ensure the general applicability of the 
platform software, it has a layer structure in which 
the microcontroller and other hardware factors are 
hidden by the low-level microcontroller abstraction 
layer (MCAL).

For compliance with functional safety standards, 
the development process conforms to automotive 
safety integration level (ASIL) D stipulated by 
ISO 26262 to ensure that the platform software can 
be used for products with any safety level.

Implementing a freedom from interference 
(FFI) function is an important technology for 
complying with functional safety standards. The FFI 
function applies to situations when software with 
different safety levels (ASILs) coexists on the same 
microcontroller and prevents dependent failures 
propagating from software with a low ASIL to 
software with a high ASIL.

While the platform software developed by 
Hitachi has the highest ASIL-D level, the embedded 
application software used in vehicles may have various 
different levels, such as ASIL-A or ASIL-B, or may 
be subject to quality management (QM) that is outside 
the scope of functional safety.

Accordingly, the following protection functions are 
incorporated into the platform software to prevent the 
propagation of dependent failures from software with 
safety levels other than ASIL-D.

(1) Timing protection
This mainly involves using AUTOSAR operating 

system (OS) functions to monitor the timing of tasks 
and interrupts. Hitachi has also added functions it has 
developed itself to strengthen protection.
(2) Memory protection (memory partitioning)

Thi s  uses  the  AUTOSAR OS and  the 
microcontroller’s memory protection functions 
to protect the ASIL-D areas of memory. Hitachi 
has developed a high-speed memory partitioning 
technique that minimizes the overhead associated 
with switching the program execution mode between 
ASIL-D and other safety levels (context switching).

FORMAL VERIFICATION
The ISO 26262 standard for functional safety 

for road vehicles recommends the use of formal 
verifi cation for ASIL-C and ASIL-D systems that 
have particularly high safety requirements. Hitachi has 
incorporated one such formal verifi cation technique, 
called model checking, into its products to maintain 
and improve the reliability of vehicle software as 
it becomes increasingly large and complex. The 
motivation is to reduce the level of software defects 
to near zero by comprehensively testing all test paths 
through the source code as well as the conventional 
testing method of comparing the output produced by 
a particular input with the expected output.
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Fig. 2—Overview of Hitachi’s Standard Platform Software.
The product-specifi c application layer is at the top and the 
platform software layer (standard software platform) at the 
bottom, with the RTE in between.

RTE: run-time environment   
AUTOSAR: Automotive Open System Architecture   
OS: operating system   MCAL: microcontroller abstraction layer   
CAN: controller area network   SYS: system   DIAG: diagnosis   
MEM: memory   COM: communications   
SPI: serial peripheral interface   FR: FlexRay   
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Formal verification uses a precisely defined 
language to represent the requirements and associated 
design, and can verify that the two match through 
the use of mathematical theory. In the case of model 
checking, this verifi cation is performed automatically. 
Model checking works by using a model of the 
software design and having a computer rigorously 
work through the potential states that can arise when 
the software is executing to determine whether there 
are any operations that are not in the specifi cations 
(operations that were not foreseen in the design 
process). The problem with this approach, however, 
arises when the number of software states is very large 
and the computer does not have enough resources to 
check them all. Despite improvements in computer 
performance, the scope of application for model 
checking has remained limited and its use on the 
large software used in production products has been 
problematic for many years.

To implement a practical form of formal verifi cation 
(model checking), Hitachi has developed a technique 
that signifi cantly reduces the number of states in the 
check model by analyzing the dependencies between 
variables that appear in the source code to identify 
which code is relevant to the variables in the software 
being checked, and then converting this into the 
check model (see Fig. 3). By doing so, Hitachi has 
succeeded in applying model checking to the complete 
software for electronic control units, even though such 

software may consist of as many as several hundred 
thousand lines(3). The size of the software being 
checked is approximately 10 times larger than other 
examples reported in the literature. The reasons why 
checking can be performed for such large program 
sizes is that the analysis technique features precision 
and high speed (100,000 lines or so of code can be 
analyzed in a few minutes on a standard PC), and 
because means have been provided for the software 
developers to select check points or adjust the range of 
software selected for conversion based on their design 
knowledge. Variable dependencies can be plotted on a 
graph to provide the software developers with visual 
ways of adjusting the scope of model conversion.

This technique was used to produce a tool to help 
with checking that makes the work more effi cient 
by automatically generating the check model from 
the software’s source code(4). This provides the 
infrastructure for applying formal methods (model 
checking) to product developments with the ASIL-C 
or ASIL-D level. Hitachi is proceeding with its 
progressive introduction.

VIRTUAL MICROCONTROLLER 
APPLICATION SIMULATION TECHNIQUE

This section describes the use of a virtual 
microcontroller application simulation technique for 
testing in-vehicle control software without the target 
hardware.
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Fig. 3—Technique for Automatic Generation of Validation Model from Source Code.
Check point variables are those that are potentially affected by a defect. The tool automatically determines the links between these 
variables and other variables (dependencies) and identifi es the relevant code with a high degree of precision. The software designers 
can also use their design knowledge to limit the scope of the source code to be converted to a model. Together, these techniques 
produce a model that can be used for validation.

I/O: input/output
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The conventional practice for validating control 
software at the production code level in the past 
was to use hardware-in-the-loop simulation (HILS). 
This involved connecting the actual microcontroller 
hardware to a simulator that modeled the behavior 
of the system being controlled. However, use of the 
actual hardware brings with it practical restrictions. In 
response, Hitachi has developed virtual HILS (vHILS) 
to allow validation of control software without the 
target hardware. This uses a joint simulation consisting 
of a virtual microcontroller and a model of the 
system being controlled(5), (6), (7). vHILS can be used 
for validating control software at the production code 
level. The main benefi ts are, (1) software validation 
can be performed at times and places where the 
microcontroller and other parts of the target system 
are not available, and (2) faster validation achieved by 
performing large numbers of tests concurrently, which 
is made possible by the ease with which the validation 
environment can temporarily be replicated.

The vHILS technique was applied to an adaptive 
cruise control (ACC) system (see Fig. 4). The ACC 
system maintains a safe following distance behind 
the vehicle ahead by controlling the engine, brake, 
and other systems based on the distance to the other 
vehicle and its relative speed acquired using an external 
recognition sensor. The new validation system reused 
the MATLAB*/Simulink* models used in HILS for the 
electronic control units (ECUs) and the engine, brake, 

and other vehicle systems that they control. New models 
were produced, however, for the main microcontroller, 
sub-microcontroller, and memory in the ACC ECU, and 
for the controller area network (CAN) communications 
it uses to connect to other ECUs. In the case of CAN 
communications, the speed of simulation was increased 
without compromising accuracy by simulating the 
message-level communications, which is all that is 
needed to test the control software.

The same test cases used for the previous HILS 
testing were repeated on the vHILS system and 
the simulation accuracy and execution speed were 
assessed. The results shown in Fig. 4 indicate 
agreement for the logical operations such as the 
vehicle engine speeds and the speed change timings. 
Although equivalent accuracy was achieved, the 
execution speed was only 34% that of HILS. This 
indicates that equivalence with the target system 
can be achieved using a three-node confi guration by 
executing a number of tests concurrently. Validation 
processing performance superior to HILS was also 
demonstrated by increasing the number of computing 
nodes. Results have also been obtained indicating 
that the amount of work required for pre-delivery 
testing can be reduced to 1/20 to 1/400 that of HILS 
by implementing the means to execute software 
validation automatically using cloud computing(7).

*   MATLAB and Simulink are registered trademarks of The MathWorks, 
Inc. of the USA.
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Fig. 4—Application of Simulation with Virtual Microcontroller to ACC System.
Validation of control software at the production code level was successfully conducted without using the target hardware by 
performing a joint simulation combining the MATLAB/Simulink models for the systems being controlled with the CoMET models for 
CAN communications and the ECU containing the microcontrollers.

ACC: adaptive cruise control   ECU: electronic control unit   CPU: central processing unit   MJT: multi-junction timer   ICU: interrupt control unit   
ADC: analog/digital converter   HILS: hardware-in-the-loop simulation   vHILS: virtual HILS   I/F: interface   
* CoMET is a trademark or registered trademark of Synopsys Inc.
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CONCLUSIONS
This article has described platform software 

development technologies and advanced validation 
techniques for the next generation of in-vehicle control 
software development.

Hitachi Automotive Systems, Ltd. is working 
with the research divisions of Hitachi to devise 
platform technologies for in-vehicle control software 
development that extend beyond those described in 
this article. By integrating the technologies described 
here, Hitachi will be able to establish advanced 
development processes for the next generation of in-
vehicle control software.
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