
133 Hitachi Review Vol. 63 (2014), No. 2

- 78 -

Advanced Electronic Platform Technologies Supporting
Development of Complicated Vehicle Control Software

Yoshinobu Fukano, Dr. Sci.

Kosei Goto

Masahiro Matsubara

Yasuo Sugure, Dr. Eng.

Yoshihiro Miyazaki

OVERVIEW: The programs used by in-vehicle control software are
increasing in size and complexity as vehicles adopt more advanced functions
such as electric drive and collision prevention safety. There is also a need
for techniques for the effi cient development of software that has high levels
of safety and reliability in accordance with the ISO 26262 international
standard for functional safety in road vehicles published in 2011. In
response to these challenges, Hitachi has been working on the development
of platform software technology for functional safety and advanced software
verifi cation techniques.

INTRODUCTION
THE use of embedded systems in vehicles dates back
to the 1970s when they were introduced to fulfi ll
societal requirements such as road safety measures
and the regulation of exhaust gas from motor
vehicles. Nowadays, in-vehicle control software is
used for the integrated control of the core vehicle
functions of driving, cornering, and stopping, and
in a variety of different components in the engine,
powertrain, chassis, and other systems. The functional
requirements of in-vehicle control software are
becoming more advanced with each passing year,
with the software set to become even larger and more
complex(1).

This article describes the latest technology for the
development of such large and complex in-vehicle
control software.

TRENDS IN IN-VEHICLE CONTROL
SOFTWARE DEVELOPMENT

Measured by lines of code, the total size of software
used in a vehicle reached about two million lines in
2005. More recently, the scale and complexity of in-
vehicle control software development has continued
its steady rise due to factors such as the use of electric
drive in hybrid and electric vehicles. It is estimated to
reach 100 million lines of code by 2015.

In addition to control of the engine and powertrain,
and chassis control covering systems such as brakes,
power steering, and suspension, the in-vehicle control
software for the next generation of vehicles will also
include control of collision prevention safety and
energy management. This is creating a need for more

effective development capabilities for control and
embedded software(2) (see Fig. 1).

As in-vehicle control software becomes larger and
incorporates more advanced functions, there is a need
to shorten development times without compromising
software quality. There is also a need for safety design
and verifi cation in accordance with the requirements of
the ISO 26262 standard for functional safety for road
vehicles. Hitachi has developed platform software
technologies and advanced verifi cation techniques
(formal verification and virtual microcontroller
application simulation) that meet these requirements.
The following section describes these technologies.

Safety control

Powertrain
control

Vehicle
management

solution

Global data center

ADAS
controller

Engine
management
system

Motor and
inverter

Electric steering
Integrated
energy controller

TCU

Navigation
system

Heat manage-
ment system

Battery system
Service center

Electrically
controlled brakes

Suspension

Stereo camera

Chassis
control

Energy
control

Fig. 1—Overview of In-Vehicle Control Software for Next-
generation Vehicles.
In addition to the engine, powertrain, and chassis systems, the
software needs to perform integrated management that also
includes such things as collision prevention safety, energy
control, and connections to external networks.

ADAS: advanced driver assistance system
TCU: telemetrics communication unit

Hitachi Review Vol. 63 (2014), No. 2 134

- 79 -

PLATFORM SOFTWARE TECHNOLOGIES
FOR FUNCTIONAL SAFETY

Hitachi Automotive Systems, Ltd. is working on
standard software platforms for signifi cantly shortening
the time taken to develop embedded software for
vehicles while also reducing its cost and achieving
higher reliability. Hitachi’s standard platform software
for compliance with functional safety standards and
industry standardization [such as the Automotive Open
System Architecture (AUTOSAR)] (see Fig. 2) can run
on the microcontrollers used mainly for powertrain
systems such as the engine or inverter, and for brakes
and other chassis systems.

The structure of the standard platform software
is based on the industry standard AUTOSAR
specifi cation (ICC1). Also, application layer software
developed by Hitachi’s customers or its product design
departments interfaces with the platform software
via a run-time environment (RTE). Accordingly, by
complying with the RTE interface specifi cations, the
application layer software can minimize the infl uence
of differences in hardware such as the choice of
microcontroller or the circuit design of control units.

Also, to ensure the general applicability of the
platform software, it has a layer structure in which
the microcontroller and other hardware factors are
hidden by the low-level microcontroller abstraction
layer (MCAL).

For compliance with functional safety standards,
the development process conforms to automotive
safety integration level (ASIL) D stipulated by
ISO 26262 to ensure that the platform software can
be used for products with any safety level.

Implementing a freedom from interference
(FFI) function is an important technology for
complying with functional safety standards. The FFI
function applies to situations when software with
different safety levels (ASILs) coexists on the same
microcontroller and prevents dependent failures
propagating from software with a low ASIL to
software with a high ASIL.

While the platform software developed by
Hitachi has the highest ASIL-D level, the embedded
application software used in vehicles may have various
different levels, such as ASIL-A or ASIL-B, or may
be subject to quality management (QM) that is outside
the scope of functional safety.

Accordingly, the following protection functions are
incorporated into the platform software to prevent the
propagation of dependent failures from software with
safety levels other than ASIL-D.

(1) Timing protection
This mainly involves using AUTOSAR operating

system (OS) functions to monitor the timing of tasks
and interrupts. Hitachi has also added functions it has
developed itself to strengthen protection.
(2) Memory protection (memory partitioning)

Thi s uses the AUTOSAR OS and the
microcontroller’s memory protection functions
to protect the ASIL-D areas of memory. Hitachi
has developed a high-speed memory partitioning
technique that minimizes the overhead associated
with switching the program execution mode between
ASIL-D and other safety levels (context switching).

FORMAL VERIFICATION
The ISO 26262 standard for functional safety

for road vehicles recommends the use of formal
verifi cation for ASIL-C and ASIL-D systems that
have particularly high safety requirements. Hitachi has
incorporated one such formal verifi cation technique,
called model checking, into its products to maintain
and improve the reliability of vehicle software as
it becomes increasingly large and complex. The
motivation is to reduce the level of software defects
to near zero by comprehensively testing all test paths
through the source code as well as the conventional
testing method of comparing the output produced by
a particular input with the expected output.

Application (components)

Hitachi’s standard platform software Platform software
customized for
product
(Complex Drivers)

RTE

COM

MCAL

Microcontroller

A
U

T
O

SA
R

 O
S

SY
S

D
IA

G

M
E

M

C
A

N

SP
I

FR

Fig. 2—Overview of Hitachi’s Standard Platform Software.
The product-specifi c application layer is at the top and the
platform software layer (standard software platform) at the
bottom, with the RTE in between.

RTE: run-time environment
AUTOSAR: Automotive Open System Architecture
OS: operating system MCAL: microcontroller abstraction layer
CAN: controller area network SYS: system DIAG: diagnosis
MEM: memory COM: communications
SPI: serial peripheral interface FR: FlexRay

135 Advanced Electronic Platform Technologies Supporting Development of Complicated Vehicle Control Software

- 80 -

Formal verification uses a precisely defined
language to represent the requirements and associated
design, and can verify that the two match through
the use of mathematical theory. In the case of model
checking, this verifi cation is performed automatically.
Model checking works by using a model of the
software design and having a computer rigorously
work through the potential states that can arise when
the software is executing to determine whether there
are any operations that are not in the specifi cations
(operations that were not foreseen in the design
process). The problem with this approach, however,
arises when the number of software states is very large
and the computer does not have enough resources to
check them all. Despite improvements in computer
performance, the scope of application for model
checking has remained limited and its use on the
large software used in production products has been
problematic for many years.

To implement a practical form of formal verifi cation
(model checking), Hitachi has developed a technique
that signifi cantly reduces the number of states in the
check model by analyzing the dependencies between
variables that appear in the source code to identify
which code is relevant to the variables in the software
being checked, and then converting this into the
check model (see Fig. 3). By doing so, Hitachi has
succeeded in applying model checking to the complete
software for electronic control units, even though such

software may consist of as many as several hundred
thousand lines(3). The size of the software being
checked is approximately 10 times larger than other
examples reported in the literature. The reasons why
checking can be performed for such large program
sizes is that the analysis technique features precision
and high speed (100,000 lines or so of code can be
analyzed in a few minutes on a standard PC), and
because means have been provided for the software
developers to select check points or adjust the range of
software selected for conversion based on their design
knowledge. Variable dependencies can be plotted on a
graph to provide the software developers with visual
ways of adjusting the scope of model conversion.

This technique was used to produce a tool to help
with checking that makes the work more effi cient
by automatically generating the check model from
the software’s source code(4). This provides the
infrastructure for applying formal methods (model
checking) to product developments with the ASIL-C
or ASIL-D level. Hitachi is proceeding with its
progressive introduction.

VIRTUAL MICROCONTROLLER
APPLICATION SIMULATION TECHNIQUE

This section describes the use of a virtual
microcontroller application simulation technique for
testing in-vehicle control software without the target
hardware.

Tool for automatic generation of validation model

Exclude code with
no links to check point.

Select check points and limit scope.

Reduce number of
states to make
validation possible.

Control 1
Application interface

OS I/O Communications

Platform software

System being
controlled Hardware

Model validation units

Vehicle control system

Defect
path

Start

Control 1

Control 1Control 2

Interrupt

Interrupt

Stop engine

Control 2 Diagnostics

Variable

Dependency

Software designer

Source code
C programming

language

Defect

Adjust
scope

Selection

Conversion

Check model

Check point
variables

Fig. 3—Technique for Automatic Generation of Validation Model from Source Code.
Check point variables are those that are potentially affected by a defect. The tool automatically determines the links between these
variables and other variables (dependencies) and identifi es the relevant code with a high degree of precision. The software designers
can also use their design knowledge to limit the scope of the source code to be converted to a model. Together, these techniques
produce a model that can be used for validation.

I/O: input/output

Hitachi Review Vol. 63 (2014), No. 2 136

- 81 -

The conventional practice for validating control
software at the production code level in the past
was to use hardware-in-the-loop simulation (HILS).
This involved connecting the actual microcontroller
hardware to a simulator that modeled the behavior
of the system being controlled. However, use of the
actual hardware brings with it practical restrictions. In
response, Hitachi has developed virtual HILS (vHILS)
to allow validation of control software without the
target hardware. This uses a joint simulation consisting
of a virtual microcontroller and a model of the
system being controlled(5), (6), (7). vHILS can be used
for validating control software at the production code
level. The main benefi ts are, (1) software validation
can be performed at times and places where the
microcontroller and other parts of the target system
are not available, and (2) faster validation achieved by
performing large numbers of tests concurrently, which
is made possible by the ease with which the validation
environment can temporarily be replicated.

The vHILS technique was applied to an adaptive
cruise control (ACC) system (see Fig. 4). The ACC
system maintains a safe following distance behind
the vehicle ahead by controlling the engine, brake,
and other systems based on the distance to the other
vehicle and its relative speed acquired using an external
recognition sensor. The new validation system reused
the MATLAB*/Simulink* models used in HILS for the
electronic control units (ECUs) and the engine, brake,

and other vehicle systems that they control. New models
were produced, however, for the main microcontroller,
sub-microcontroller, and memory in the ACC ECU, and
for the controller area network (CAN) communications
it uses to connect to other ECUs. In the case of CAN
communications, the speed of simulation was increased
without compromising accuracy by simulating the
message-level communications, which is all that is
needed to test the control software.

The same test cases used for the previous HILS
testing were repeated on the vHILS system and
the simulation accuracy and execution speed were
assessed. The results shown in Fig. 4 indicate
agreement for the logical operations such as the
vehicle engine speeds and the speed change timings.
Although equivalent accuracy was achieved, the
execution speed was only 34% that of HILS. This
indicates that equivalence with the target system
can be achieved using a three-node confi guration by
executing a number of tests concurrently. Validation
processing performance superior to HILS was also
demonstrated by increasing the number of computing
nodes. Results have also been obtained indicating
that the amount of work required for pre-delivery
testing can be reduced to 1/20 to 1/400 that of HILS
by implementing the means to execute software
validation automatically using cloud computing(7).

* MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. of the USA.

System being controlled
(MATLAB/Simulink)

Block diagram of simulation with virtual microcontroller used for ACC system Comparison of simulation results

Event
processor

Vehicle
model

CoMET
MATLAB

I/F

vCAN bus

Virtual CAN bus
(CoMET)

Control software
(production code)

Main
microcontroller

01001010
01101011
11101010
01010111

M32R CPU

MJT ICU I/F

I/O portADCCAN

Sub-microcontroller Memory

ACC ECU
(CoMET)R

6,000

3,000

0

E
ng

in
e

sp
ee

d
(r

pm
)

30 60

6,000

3,000

0 30 60 (s)

(s)

Inputs

HILS

vHILS

Fig. 4—Application of Simulation with Virtual Microcontroller to ACC System.
Validation of control software at the production code level was successfully conducted without using the target hardware by
performing a joint simulation combining the MATLAB/Simulink models for the systems being controlled with the CoMET models for
CAN communications and the ECU containing the microcontrollers.

ACC: adaptive cruise control ECU: electronic control unit CPU: central processing unit MJT: multi-junction timer ICU: interrupt control unit
ADC: analog/digital converter HILS: hardware-in-the-loop simulation vHILS: virtual HILS I/F: interface
* CoMET is a trademark or registered trademark of Synopsys Inc.

137 Advanced Electronic Platform Technologies Supporting Development of Complicated Vehicle Control Software

- 82 -

REFERENCES
(1) S. Kawana, “Current Status of Automotive Software

Development (Software Engineering for Embedded System),”
IPSJ Magazine 45, No. 7, pp. 713–715 (Jul. 2004) in Japanese.

(2) “Growing Use of Simulation Technology in Automotive
Software Development,” Nikkei Automotive Technology
(27), pp. 68–73 (Nov. 2011) in Japanese.

(3) Hitachi News Release, “Development of Highly Reliable
Verifi cation Technology for Automotive Control Software
Using Formal Methods” (Apr. 2013) http://www.hitachi.co.jp/
New/cnews/month/2013/04/0416a.html in Japanese.

(4) M. Matsubara et al., “Application of Model Checking to
Automotive Control Software with Slicing Technique,” SAE
2013 World Congress (2013-01-0436), (Apr. 2013).

(5) Y. Ito et al., “VIRTUAL HILS: A Model-Based Control
Software Validation Method,” SAE 2011 World Congress
(2011-01-1018), Int. J. Passeng. Cars -Electron. Electr. Syst.
4 (1):142-149 (Apr. 2011).

(6) Y. Sugure et al., “Failure Mode and Effects Analysis Using
Virtual Prototyping System with Microcontroller Model
for Automotive Control System,” 7th IFAC Symposium on
Advances in Automotive Control (Sept. 2013).

(7) Hitachi News Release, “Development of Fully Virtual
Simulation Technique for Railway, Automotive, and
Other Embedded Software that Does not Require Actual
System” (Oct. 2010) http://www.hitachi.co.jp/New/cnews/
month/2010/10/1028.html in Japanese.

(8) vECU-MBD Working Group, http://www.vecu-mbd.org/en/

To promote the wider adoption of the vHILS
technique described above through collaboration at
all levels of the industry with an interest in vHILS
(automotive manufacturers, parts makers, simulation
tool vendors, semiconductor manufacturers, and
research institutions), the Virtual ECU Model-Based
Development (vECU-MBD) Working Group has been
set up at the Japan Virtual Microcontroller Initiative
(JVMI)(8).

CONCLUSIONS
This article has described platform software

development technologies and advanced validation
techniques for the next generation of in-vehicle control
software development.

Hitachi Automotive Systems, Ltd. is working
with the research divisions of Hitachi to devise
platform technologies for in-vehicle control software
development that extend beyond those described in
this article. By integrating the technologies described
here, Hitachi will be able to establish advanced
development processes for the next generation of in-
vehicle control software.

Yoshihiro Miyazaki
Technology Development Division, Hitachi Automotive
Systems, Ltd. He is currently engaged in the
development of electronic platform technology for in-
vehicle control systems. Mr. Miyazaki is a member of
The Institute of Electrical Engineers of Japan (IEEJ),
IPSJ, and JSAE.

Kosei Goto
Electric Platform Development Department,
Technology Development Division, Hitachi Automotive
Systems, Ltd. He is currently engaged in the
development of standardized basic software. Mr. Goto
is a member of the JSAE.

Yoshinobu Fukano, Dr. Sci.
System Development Engineering Department,
Technology Development Division, Hitachi Automotive
Systems, Ltd. He is currently engaged in the
development of model-based development technology
for the in-vehicle control software development
process. Dr. Fukano is a member of the Association
for Computing Machinery (ACM) and the Society of
Automotive Engineers of Japan (JSAE).

Yasuo Sugure, Dr. Eng.
Platform Systems Research Department, Central
Research Laboratory, Hitachi, Ltd. He is currently
engaged in research of virtual prototyping systems
using microcontroller models for automotive control
systems. Dr. Sugure is a member of the Society
of Automobile Engineers (SAE) and The Institute
of Electronics, Information and Communication
Engineers (IEICE).

Masahiro Matsubara
GM4 Unit, Department of Green Mobility Research,
Hitachi Research Laboratory, Hitachi, Ltd. He is
currently engaged in the development of verifi cation
techniques for automotive control software.
Mr. Matsubara is a member of the Information
Processing Society of Japan (IPSJ).

ABOUT THE AUTHORS

