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OVERVIEW: First-principles materials-simulation technology guides 
and assists the development of functional materials by high-precision 
calculations of electronic states. The accurate determination of electronic 
states is an important basis for understanding the mechanisms by which 
material functions come about so that their performance can be improved. 
It also enables theory-based materials design by predicting the functions of 
unknown materials. This article describes three current areas of work that 
use this technology, namely predicting the efficiency of germanium light 
sources for “photonics-electronics convergence systems,” the development 
of techniques for predicting the Curie temperature in the design of magnetic 
materials able to function at high temperature, and the development of 
highly efficient analysis techniques for strongly correlated materials that 
are difficult to analyze using standard methods.

INTRODUCTION

MATERIALS technology is an important field of 
technology that underpins innovation at Hitachi. While 
developing new materials is not easy, improving the 
performance of these materials or providing them with 
new functions can make a major impact, because they 
form a core part of numerous products and services.

In research aimed at enhancing the functions of 
materials, it is important to proceed on a basis of 
understanding the basic mechanisms by which those 
functions (physical properties) come about. At the 
cutting edge of development, it is not uncommon for 
the newness of materials to render existing knowledge 
irrelevant, and yet it is this that offers the key to higher 
performance.

To understand new materials, it is important first 
to determine their electronic states. Most material 
properties are a consequence of the behavior 
of electrons. This applies not only to electrical 
properties, such as whether the material is a metal, 
a semiconductor, or an insulator, but also such 
characteristics as melting point, boiling point, modulus 
of elasticity, and chemical reactivity. Optical and 
magnetic functions can also be explained in terms of 
electronic states.

First-principles calculation (simulation) is an 
essential tool for determining these electronic states. 
This method uses quantum mechanics (first principles) 

as the sole basis to calculate electronic states, without 
resorting to empirical parameters determined by 
experiment. Electronic states are calculated entirely 
from the atomic species and their positions. If 
necessary, the positions of atoms can be determined 
by searching for minimum-energy configurations. 
Because no empirical parameters are necessary to 
obtain results in agreement with experiments, even 
unknown materials that do not yet exist can be 
calculated with confidence. That is, first-principles 
calculation can be used not only to understand existing 
materials, but also as a valuable tool for theoretical 
materials design tasks, such as predicting the physical 
properties of unknown materials in advance of 
experiment, narrowing down promising candidate 
materials, and predicting optimal composition.

While a wide range of calculation methods 
fall under the term “first-principles calculation,” 
density functional theory (DFT), which is based on 
the calculation of electron density distributions, is 
widely used because of its speed and accuracy. In 
fact, the term “first-principles calculation” is often 
synonymous with DFT. This section describes 
research that is based on DFT.

Although first-principles calculation technology is 
known to be useful, there is still a problem that even 
DFT, one of the fastest methods in first-principles 
calculations, imposes high computational costs, 
making it difficult to apply to computational models 
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that simulate a large number of atoms. This has led to 
problems such as an inability to calculate systems that 
require a large model or a loss of accuracy due to use 
of an oversimplified model. However, with computing 
hardware continuing to improve in speed by a factor 
of around 1,000 every decade(1), calculations are 
now much faster than they were 10 or 20 years ago. 
Together with advances in computational algorithms 
designed to take advantage of computer architectures 
with higher degrees of parallelism, this means that it 
is now possible to use much larger models. This has 
considerably expanded the range of phenomena that 
can be simulated, with the result that first-principles 
simulation is playing an increasingly important role 
in materials research.

At the Advanced Research Department, Central 
Research Laboratory, Hitachi, Ltd., first-principles 
simulation is used for research into a wide range 
of materials, including magnetic materials, 
lithium battery materials, light-emitting materials, 
thermoelectric materials, catalysts, and polymers. 
Because it is the novelty of a computational model 
or calculation method that provides new knowledge, 
research into these materials at Hitachi includes 
continually working to improve and extend simulation 
techniques to expand the range of phenomena that can 
be simulated and to improve accuracy.

This article describes such research into light-
emitting materials, magnetic materials, and strongly 
correlated materials

EFFICIENCY PREDICTION FOR 
GERMANIUM LIGHT SOURCES

Use of optical wiring is one way to improve the 
performance and power consumption of silicon 
devices. The best way to achieve this at low cost is to 
develop a “photonics-electronics convergence system” 
(system that combines both photonics and electronics) 
in which light sources are fabricated on a silicon 
substrate using monolithic integration. Unfortunately, 
it is difficult to fabricate group III-V compound 
semiconductors, a well-known light source material, 
using the processes used in silicon chip manufacturing. 
Although the group IV element germanium has a good 
affinity with silicon processes, it suffers from a low 
light emission efficiency. This section describes the 
prediction of germanium light emission efficiency, 
which is part of the effort being made to overcome 
this difficulty so that germanium can be turned into a 
practical new light source material.

Germanium is an indirect-gap semiconductor 
(see Fig. 1). The injection of current causes an 
accumulation of electrons at the bottom of the 
conduction band and holes at the top of the valence 
band. When there is an unoccupied state (a hole exists) 
in the valence band immediately below the conduction 
band electron, that electron can fall into that valence-
band state (undergo a direct transition) by emitting a 
photon. In normal germanium, holes accumulate at 
the Γ point and electrons at the L point. Accordingly, 
light emission efficiency is low because these direct 
transitions do not occur, and instead light is only 
emitted by less frequent indirect transitions triggered 
by lattice vibration. On the other hand, it is known 
that the electronic state changes when tensile strain is 
applied, making it easier for electrons to accumulate 
at the Γ point, and that using a high concentration of 
n-type doping to provide a large number of electrons 
makes it possible to inject electrons not only at the L 
point but also the Γ point(2). However, while simple 
qualitative predictions have been made for these 
effects, no quantitative predictions have yet been 
made. Because adequate light emission efficiency 
has yet to be achieved through experimental methods, 
Hitachi set out to use first-principles calculations to 
predict light emission efficiency so that this could be 
used in materials design to assess the extent to which 
strain and doping should be used.
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Fig. 1—Effect of Strain on Band Structure of Germanium.
When strain is not present, germanium is an indirect-gap 
semiconductor with the L point as the lowest point of the 
conduction band. When a large strain is present, germanium 
becomes a direct-gap semiconductor with the Γ point becoming 
the lowest point.

ΔEL: Difference between levels of conduction band at Γ point and L point
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Calculation of Light Emission Efficiency
This calculation method is based on the DFT using 
plane wave basis for describing wave function and 
pseudopotential method, which treats the nucleus 
and core orbital electrons as an ion core. A hybrid 
functional(3) is used as the exchange-correlation term.

The top of Fig. 2 shows the wave function for the 
Γ point of germanium. The blue and white surfaces 
are isosurfaces for the wave functions of the valence 
and conduction bands, with the different colors 
representing opposite signs. To determine the light 
emission efficiency, it is necessary to calculate the 
probability of optical transition between these two 
levels. This in turn requires obtaining the optical 
transition matrix elements. That can be calculated by 
applying the x, y, and z partial differential operators 
to one of the wave functions, multiplying this with 
the other wave function and integrating the product.

The bottom half of Fig. 2 shows the distribution of 
this integrand. The different colors represent opposite 
signs. This shows that a non-zero value remains for 

the x component after performing a spatial integration, 
but that the positive and negative contributions for 
the y component cancel to zero. This indicates that 
a transition between these two states is only possible 
with the emission of light polarized in the x direction. 
The light emission efficiency can be obtained by 
performing this calculation for all combinations 
of electronic states between which transitions are 
possible and summing them with reference to the 
occupation of electrons and holes.

Although there is a difficulty in the calculation 
of optical transition matrix elements using a plane-
wave based pseudopotential method by which 
considerable error arises in the core region, it was 
solved by incorporating a core-repair term(4), (5) and 
the calculation was kept accurate.

Prediction of Light Emission Efficiency for 
Germanium Under Strain
The factors that have a major influence on the light 
emission efficiency of germanium are the injected 
electron density, hole density, strain, density of 
crystal defects, and temperature. Fig. 3 shows the 
calculated result of optical gain for an ideal defect-free 
germanium crystal at room temperature (300 K) using 
the electron and hole densities as parameters.

Achieving lasing is an important requirement for 
obtaining sufficient light output for use as a light 
source in photonics-electronics convergence systems, 
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Fig. 2—Germanium Wave Function and Calculation of Optical 
Transition Matrix Elements.
The different colors of the isosurface represent opposite signs. 
The higher the optical transition matrix elements calculated 
from the valence band and conduction band wave functions, the 
higher the light emission efficiency.
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Fig. 3—Calculated Result of Optical Gain.
The results are for no strain (0.0%) and for a biaxial strain 
(0.25%) parallel to the (001) plane. The gain is negative in 
regions where no colored surface is shown.
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and to realize that, the optical gain of the light-emitting 
material should be positive. If there are wavelengths 
at which the net gain (after subtracting the light 
absorption loss from the light emission efficiency) is 
positive, lasing is possible at those wavelengths. Fig. 3 
also shows the calculated net gains for the cases of 
no strain and 0.25% biaxial tensile strain parallel to 
the (001) plane where the vertical coordinate of the 
surfaces represents the gain (only shown for positive 
values). Regions where no surface is shown have a 
negative gain. The figure indicates that a positive 
gain is available at lower electron and hole densities 
when strain is present. Put another way, the presence 
of strain results in a higher gain for the same carrier 
(electron or hole) density. Looking at the locations 
where the surfaces are shown also indicates that the 
minimum necessary electron density is always much 
larger than the minimum necessary hole density. This 
is a consequence of the fact that electrons are not 
injected at the Γ point until they have filled up the 
region around the L point.

Although inversion of the Γ point and L point levels 
does not occur until a large strain of about 1.5% is 
present, as shown in Fig. 1, Fig. 3 indicates that gain 
improvement can be achieved at a comparatively easily 
achieved strain of 0.25% by reducing the difference 
between the two levels. Although positive gain regions 
also exist when no strain is present, these require 
impractically high electron densities of about 1020cm−3. 
Accordingly, taking advantage of strain to reduce the 
required density is a more realistic alternative.

While the above describes the calculation of gain 
at room temperature, heating due to the injected 
current raises the temperature in an actual device. 
Fig. 4 shows the gain at a variety of temperatures 
calculated to determine how the gain changes under 
such conditions. The figure shows the gains for a 
germanium crystal n-type doped with an electron 
density of 4.6 × 1019cm−3 and with a strain of 0.25% 
(same as Fig. 3) when the same number of electron 
and hole carriers are injected (current injection). Fig. 4 
shows that, even if the temperature rises above 100°C 
(400 K), and the gain falls, there is still an adequate 
region with a positive gain. Also, because the gain 
region expands if the temperature falls, it demonstrates 
that cooling is a useful technique for experimental 
confirmation of lasing.

These results show that achieving a gain requires 
carrier injection on the order of 1019cm−3, a level of 
carrier density that is not easy to achieve. A small 
number of defects also inevitably appear during 

device manufacturing, reducing the crystallinity. 
These defects shorten the life time of the injected 
carriers and prevent increases in the carrier density. 
Because doping and the use of strain to increase light 
emission efficiency also increase defects, too much 
of these will have the opposite effect of reducing the 
light emission efficiency. To find the optimal balance 
of strain, doping, and crystallinity needed to achieve 
lasing by theoretical material design will be our next 
research subject.

FIRST-PRINCIPLES ANALYSIS OF THE 
CURIE TEMPERATURE OF MAGNETS

High-performance magnets are used in a number of 
familiar products, such as hybrid electric vehicles 
(HEVs), air-conditioning compressors, and hard 
disks. While neodymium magnets (Nd2Fe14B) are 
the most common type of ferromagnets in current 
use, their poor high-temperature properties mean 
they require the addition of dysprosium (Dy), a rare 
metal. However, there was a sudden disruption in 
supply of this material in 2010, and this created a 
need for the development of new high-performance 
magnets that do not use rare metals. A key point is 
being able to provide adequate magnetism at product 
operating temperatures. The operating temperature 
of an HEV, for example, is about 200°C (473 K) or 
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Fig. 4—Temperature Dependence of Optical Gain.
A region in which lasing can occur is still present even if the 
temperature increases by about 100°C from room temperature. 
Cooling significantly expands the conditions under which lasing 
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effect of spin fluctuation and produces results that 
overestimate TC by around 200 K to 300 K.

The Monte Carlo method uses random numbers for 
the spin orientation at points in a 3D lattice extending 
across Lx × Ly × Lz (= N) unit cells to generate 
probabilistic variation (see Fig. 6). The larger the 
lattice size (Lx, Ly, Lz), the closer this approaches an 
actual system. While the Monte Carlo method gives a 
partition function that is more accurate than any other 
approximation, the problem with it is that, when used 
to calculate TC directly, it requires that a sufficiently 
large lattice be used to approximate reality, and 
this increases the computational load. Accordingly, 
Hitachi resolved this lattice size problem by using 
a method that calculates a quantity known as a “4th 
order cumulant.”

more. The key to determining the magnetism at non-
zero temperatures is the Curie temperature, which 
needs to be sufficiently higher than the operating 
temperature. The following sections describe a 
technique developed by Hitachi for the theoretical 
prediction of Curie temperature.

Curie Temperature
The electrons in the iron (Fe) and other magnetic 
atoms present in a magnetic material impart a 
magnetic moment (spin) allowing the atoms to form 
a three-dimensional (3D) crystal lattice. Fig. 5 shows 
the concept behind this phenomenon. The quantum 
mechanical interaction between these spins causes 
them to align at low temperatures, forming a 
ferromagnetic state. At higher temperatures, the spins 
fall out of alignment, reducing the magnetism to zero 
(paramagnetic state). The temperature at which this 
transition occurs is called the Curie temperature (TC).

Calculation Method
The Heisenberg model is used for the theoretical 
calculation of Curie temperature. In this model, the 
Hamiltonian for the energy of the system is written 
as follows:

H = −∑
ij
JijSi • Sj−∑

i
h • Si (1)

Where Si and Sj are the spins (3D vectors) at sites 
i and j, and the exchange parameters Jij determine 
the strength of interaction between them. These 
exchange parameters, which are the critical elements 
of this method, can be calculated from first principles 
with high precision. Specifically, the Liechtenstein 
method(6) that determines Jij from the change in 
energy when the spins at sites i and j only are varied 
by an angle θ is used. In this case, Hitachi used the 
AkaiKKR(7) first-principles calculation (DFT) code 
to calculate Jij. Once the Hamiltonian is determined, 
the spin states at non-zero temperatures can be 
determined from the statistical-mechanical partition 
function (Z).

Z = ∑e−H/kBT

{Si}
 (2)

Although it is necessary to use an approximation 
to calculate the partition function, Hitachi used the 
Monte Carlo method, which provides the highest 
level of accuracy. Hitachi also tried using mean field 
approximation, whereby the mean value of the spin is 
used to minimize the computational load. However, 
this proved to be impractical because it ignores the 
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T < TC T > TCTemperature
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Fig. 5—Concept of Curie Temperature.
In a magnetic material, a lattice is formed by the magnetic 
moment (spin) of magnetic atoms. The spin orientations become 
aligned at low temperatures (ferromagnetic state) (left) but lose 
this alignment at higher temperatures (paramagnetic state) 
(right). The temperature at which this transition takes place is 
called the Curie temperature (TC).
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Fig. 6—Crystal Model.
The actual calculation is performed for a three-dimensional 
lattice consisting of Lx × Ly × Lz unit cells (the figure shows 
tetragonal YFe12). The correct result is obtained when the lattice 
size (Lx, Ly, Lz) is infinitely large.
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of reducing U* by a small amount. These three fixed 
points are generally explained from a renormalization 
group perspective in terms of the relative magnitudes 
of the correlation length (ξ) of the magnetization (Mz) 
and the lattice size (L)(8). Hitachi has taken advantage 
of this property to calculate the Curie temperature with 
high accuracy using a comparatively small lattice.

Testing on Common Magnets
The newly developed technique was used to calculate 
the Curie temperature of ferromagnetic materials such 
as body-centered cubic iron (bcc-Fe), body-centered 
cubic cobalt (bcc-Co), face-centered cubic nickel (fcc-
Ni), YFe12, Y2Fe17, and yttrium-iron nitride (Y2Fe17N3). 
Fig. 8 shows a plot of the results, with the vertical 
axis representing the calculated temperatures and the 
horizontal axis representing the measured values. The 
dotted line indicates agreement between the calculated 
and measured values. The calculations for bcc-Fe 
and bcc-Co, which have simple structures, match 
the measured values exactly. Meanwhile, although 
the calculation slightly overestimates the Curie 
temperatures for the complex structures of YFe12, 
Y2Fe17, and Y2Fe17N3, the calculated temperatures are 
in the same relative order as the measured values. The 
calculation underestimates the Curie temperature of 
Ni. This can be explained by the low magnetic moment 
of Ni, which means the Heisenberg model provides a 
poor approximation. That these calculations reproduce 

Solution to Lattice Size Problem
The 4th order cumulant (UL) is defined as follows.

UL = 1− 〈M4
z 〉

3〈M2
z 〉2

 (3)

Here the lattice size is Lx = Ly = Lz (=L). UL has 
the property of being equal to zero when treated as a 
Gaussian distribution for which the mean value of the 
z-axis magnetization Mz (= ∑iSzi/N) is zero (<Mz>= 0). 
This condition is satisfied when the system is above 
the Curie temperature. Another property of UL is that, 
at the Curie temperature, it is not dependent on the 
lattice size. When calculated for tetragonal yttrium-
iron (YFe12), for example (see Fig. 7), as L increases, 
UL converges on one of the values 2

3 , 0.38, or 0 (fixed 
point U*), depending on the temperature. Here, 2

3  
corresponds to the ferromagnetic state when T = 0, and 
0 corresponds to the paramagnetic state when T = ∞. 
Similarly, 0.38 corresponds to the Curie temperature 
and in this case UL clearly has little dependence on 
L. Although specifying the spin state at the Curie 
temperature is difficult, when all spins are aligned 
and have the same magnitude, and are then rotated at 
random, for example, the calculation gives U* = 2

5  = 0.4. 
It is believed that the value of U* = 0.38 comes about 
because short-range correlation states have the effect 
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As the size of the lattice used in the calculation (L) increases, 
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(U*) (0, 0.38, or 2

3 ), depending on the temperature. The graph 
shows there is no dependence on L at the temperature that 
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The graph plots the Curie temperature calculated for 
ferromagnetic materials by this method (vertical axis) against 
their experimental values (horizontal axis). The Monte Carlo 
calculation is in good agreement with experiment even for 
materials with complex structures (YFe12, Y2Fe17, Y2Fe17N3).
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The electrons in a strongly correlated electron system 
can be divided into highly itinerant s and p electrons 
(electrons with s and p atomic orbital components) and 
highly localized d and f electrons (electrons with d and 
f atomic orbital components). The DFT + U method 
uses the DFT method for the s and p electrons and the 
approximate Hartree-Fock wave function method for 
the d and f electrons. The Hartree-Fock wave function 
method uses an approximation that only considers the 
on-site (within same atom) electronic interactions. 
Inter-atomic electronic interactions are ignored. 
Because consideration for the electronic interactions 
for d and f electrons is an inherent part of the DFT + U 
method, it can take appropriate account of their being 
localized and correctly specify the electronic states of 
a strongly correlated electron system.

Theoretical Determination of Ueff

The DFT + U method uses the effective interaction 
parameter (Ueff) for the on-site interactions between 
localized electrons. Ueff is obtained from the difference 
between the parameter for Coulomb interaction 
between electrons (U) and the exchange interaction 
parameter (J) (Ueff = U − J). Ueff is typically obtained 
empirically, and often takes a value of around 
5 eV. However, use of an empirical value for Ueff is 
undesirable because it means the calculation is no 
longer from first principles and therefore confidence 
in it is undermined.

Accordingly, Hitachi set about performing first-
principles DFT + U calculations in which Ueff was 
calculated theoretically. The constraint DFT method(11), 

(12) is recognized as one way to calculate a value for 
Ueff theoretically. This method performs the DFT 
calculation for different numbers of localized electrons 
in a strongly correlated electron system to obtain U 
from the second derivative of energy with respect 
to the number of localized electrons. This was done 
using the linearized muffin tin orbital method, which 
provides an easy way to calculate electronic structures 
for different numbers of localized electrons, rather 
than with the more accurate pseudopotential method. 
This is because it is difficult to use the pseudopotential 
method to calculate electronic structures for different 
numbers of localized electrons. To overcome this 
problem, Hitachi developed a technique for the 
theoretical calculation of Ueff in the DFT + U method 
based on the pseudopotential method(13). This works 
by performing the DFT + U calculation for small 
variations in the value of Ueff around 0 eV and using 
the number of localized electrons and change in 

the measured values with a practical level of accuracy 
indicates that this technique can be used to predict 
the Curie temperature of new materials from first 
principles. Accordingly, the technique will be useful 
for developing a new generation of magnetic materials 
that do not use rare elements.

USE OF DFT + U METHOD TO ANALYZE 
STRONGLY CORRELATED MATERIALS

While the DFT method is recognized as suitable for 
analyzing the electronic states of most materials, there 
is one class of materials to which it is not applicable. 
That class consists of materials with localized 
electrons, what is known as a “strongly correlated 
electron system.” In addition to the magnets described 
above, other examples of strongly correlated electron 
systems include the cathode material used in lithium-
ion batteries, high transition temperature (high-Tc) 
superconductors, metal oxides, and catalysts. Since 
these materials play an important role in social 
infrastructure systems, analysis of the electronic 
structures of strongly correlated electron systems is an 
important topic for infrastructure materials research.

The DFT method uses the electronic states of a 
hypothetical system (in which there is no interaction 
between electrons) as the basis for analyzing actual 
electronic structures where interactions are present. 
Accordingly, while the DFT method is suitable for 
analyzing the electronic structures of materials such as 
semiconductors and metals with properties determined 
by free electrons, it is less suited to performing such 
analyses for strongly correlated electron systems with 
localized electrons. The solution to this problem with 
the DFT method is the DFT + U method(9), (10). Fig. 9 
shows an overview.

Localized 
d and f electrons

Itinerant
 s and p electrons

Fig. 9—Overview of DFT + U Method.
This strongly correlated electron system consists of itinerant 
s and p electrons and localized d and f electrons. The DFT + 
U method uses the DFT method for the s and p electrons and 
introduces the concept of on-site energy for the d and f electrons.

DFT: density functional theory
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constitute strongly correlated electron systems with 
localized 4f electrons in their respective Ce and Nd 
atoms. Hitachi used the DFT + U method to calculate 
the electronic states, using the method described above 
to determine the values of Ueff for the 4f electrons. The 
Ueff values are 8.99 eV for Ce and 8.17 eV for Nd. 
These values are larger than the empirical value of 
5 eV. The generalized gradient approximation (GGA) 
was chosen as the exchange-correlation term in the 
DFT part of the calculation. The materials were also 
assumed to be in an antiferromagnetic state.

Fig. 10 and Fig 11 show the results of calculating 
the density of states (DOS) for Ce2O3 and Nd2O3 
respectively. To compare the differences between 
calculation methods, the graphs show the results for 
both DFT on its own and DFT + U. DOS has both a 
positive and negative value, representing the up and 
down spin components. Because the material is in 
an antiferromagnetic state, there is little difference 

energy given by this calculation to obtain the second 
derivative for energy with respect to the number of 
localized electrons, and thereby to calculate the value 
of U. Because the value of J can be approximated as 
1
10 the value of U(11), this can be used to determine 
Ueff = U − J. Because the value of Ueff obtained 
by this procedure does not include any empirical 
parameters, it means that the DFT + U calculation can 
be performed from first principles.

Electronic State Calculation for 
Antiferromagnetic Ce2O3 and Nd2O3

This section describes the application of the first-
principles DFT + U method to cerium (III) oxide 
(Ce2O3) and neodymium (III) oxide (Nd2O3).

Ce2O3 is a catalyst for reducing exhaust emissions 
and Nd2O3 is a material that occurs in crystal boundaries 
in neodymium magnets and may influence their 
coercivity. Both have a hexagonal crystal structure and 
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Fig. 10—Density of Electronic States for (Antiferromagnetic) 
Hexagonal Ce2O3.
Graph (a) shows the result calculated using the DFT method 
and graph (b) shows the result calculated using the DFT + U 
method. The DFT + U method gives a Ueff of 8.99 eV for the 4f 
electrons of Ce.
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Fig. 11—Density of Electronic States for (Antiferromagnetic) 
Hexagonal Nd2O3.
Graph (a) shows the result calculated using the DFT method 
and graph (b) shows the result calculated using the DFT + U 
method. The DFT + U method gives a Ueff of 8.17 eV for the 4f 
electrons of Nd.
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These results confirmed the reliability of a first-
principles DFT + U method that uses theoretical 
calculations to determine Ueff, and that it has better 
agreement with experiment compared to past DFT 
+ U methods that have determined Ueff empirically. 
This method, which can be used alongside the 
accurate pseudopotential method, and which can 
analyze the electronic states of strongly correlated 
electron systems at high speed and with a similar 
computational cost to the DFT method, is an effective 
tool for designing the strongly correlated materials that 
underpin social infrastructure systems.

CONCLUSIONS

A decade ago, it was predicted that the thousand-fold 
improvement in computer speed every 10 years would 
begin to slow down. In practice, no such slowing has 
occurred(1), and the trend can be expected to continue 
for some time yet. Accordingly, the scope and 
reliability of research based on the use of computer 
simulation will continue to grow in the future.

Although the value of first-principles calculation 
technology has already been demonstrated and is 
widely acknowledged, the details of this technology 
are not yet complete. Progress continues with a 
variety of improvements being achieved on a regular 
basis. Given this situation, if materials research is 
to be pursued using first-principles calculations to 
advantage, it is essential to follow up on advanced 
simulation technology continuously and to take up the 
challenge of making new improvements as described 
here. Hitachi intends to continue with these efforts 
in the future to expand the scope of research, and to 
work on elucidating the physical properties of new 
substances and on performing theoretical design of 
new materials.
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between spin components, giving a graph with 
horizontal symmetry.

States with an energy of 0 eV are at the Fermi level 
and the DOSs at and around these states have a major 
influence on the electrical behavior of the material. 
The results calculated using the DFT method show 
that both Ce2O3 and Nd2O3 have non-zero DOSs at and 
around 0 eV, and since there is no band gap (energy 
ranges where the DOS is zero) at these energy levels, 
the electronic states behave like a metal. As these 
materials are in fact insulators, this indicates that the 
DFT method has failed to reproduce experimental 
results. The DFT + U calculation, on the other hand, 
correctly reproduces experimental results by showing 
that both materials have a band gap at around 0 eV and 
therefore behave like insulators.

The size of the gap between the 2p band (O) and 4f 
band (Ce) for Ce2O3 calculated by DFT + U is 2.34 eV. 
This is very close to the measured value of 2.4 eV(14). 
Similarly, the gap between the 4f band (Ce) and 5d 
band (Ce) is calculated to be 1.49 eV, which is close to 
the value of 1.29 eV calculated by the GW method(15) 
(which considers many body effects and therefore is 
accurate but with a high computational cost). When 
the same calculation is performed using an empirical 
value of Ueff (5 eV), it gives a band gap of 1.69 eV 
between the 2p band (O) and 4f band (Ce) and 2.19 eV 
between the 4f band (Ce) and 5d band (Ce), indicating 
poor agreement with the experimental values.

In the case of Nd2O3, the DFT + U method 
calculates a band gap of 3.44 eV, considerably 
different from the experimental value of 4.7 eV(14). 
This is because the band gap for this material is 
determined by the energy difference between the 2p 
band (O) and 5d band (Nd). As Ueff is introduced for 
the Nd 4f electrons, the 4f band (Nd) is split into high 
and low energies and is away from the Fermi level. In 
contrast, there is no Ueff for bands such as the 2p band 
(O) and 5d band (Nd), and therefore these remain close 
to the Fermi level. It is known that the self-interaction 
of electrons gives the DFT method a tendency to 
underestimate the band gap, and the difference in 
level between the 2p band (O) and 5d band (Nd) is 
underestimated here for the same reason. Accordingly, 
introducing the Ueff for the Nd 5d electrons also has 
the potential to improve the calculated value of band 
gap. Furthermore, when the DFT + U calculation was 
performed using an empirical value for the Ueff for the 
Nd 4f electrons (5 eV), it indicated that the electronic 
states behave like a metal and failed to correctly 
describe the insulating nature of Nd2O3.
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